IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics0960077922003319.html
   My bibliography  Save this article

New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays

Author

Listed:
  • Yan, Hongyun
  • Qiao, Yuanhua
  • Duan, Lijuan
  • Miao, Jun

Abstract

In this paper, the non-decomposition method is employed to investigate the quasi-projective synchronization of fractional-order complex-valued neural networks (FOCVNNs) with leakage and discrete delays. Firstly, two new inequalities are established in complex domain, which provides a powerful tool to explore the synchronization and stability of complex-valued systems. Secondly, by means of the Banach fixed point theorem, the existence and uniqueness of solution of the delayed FOCVNNs is discussed under certain conditions. Thirdly, a linear complex-valued controller is designed to induce quasi-projective synchronization of the delayed FOCVNNs, and some novel results are given by using the presented inequalities, the non-decomposition method and the Lyapunov stability theory. Further, the error bounds are estimated. It is found that a smaller error bound can be obtained by appropriately increasing the feedback gains. Finally, two numerical examples are given to verify the effectiveness of the theoretical results and the practicability of the synchronization strategy in secure communication.

Suggested Citation

  • Yan, Hongyun & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2022. "New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003319
    DOI: 10.1016/j.chaos.2022.112121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922003319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Xu, Yao & Yu, Jintong & Li, Wenxue & Feng, Jiqiang, 2021. "Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    3. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Yuan, Shuai, 2021. "Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. D. Baleanu & S. J. Sadati & R. Ghaderi & A. Ranjbar & T. Abdeljawad (Maraaba) & F. Jarad, 2010. "Razumikhin Stability Theorem for Fractional Systems with Delay," Abstract and Applied Analysis, Hindawi, vol. 2010, pages 1-9, June.
    5. Wang, Fei & Zheng, Zhaowen, 2019. "Quasi-projective synchronization of fractional order chaotic systems under input saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    6. Miaadi, Foued & Li, Xiaodi, 2021. "Impulsive effect on fixed-time control for distributed delay uncertain static neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Du, Feifei & Lu, Jun-Guo, 2021. "New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    8. Meng Hui & Chen Wei & Jiao Zhang & Herbert Ho-Ching Iu & Ni Luo & Rui Yao & Lin Bai, 2020. "Finite-Time Projective Synchronization of Fractional-Order Memristive Neural Networks with Mixed Time-Varying Delays," Complexity, Hindawi, vol. 2020, pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    2. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Shi, Lingna & Li, Jiarong & Jiang, Haijun & Wang, Jinling, 2023. "Quasi-synchronization of multi-layer delayed neural networks with parameter mismatches via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Li, Xuemei & Liu, Xinge & Wang, Fengxian, 2023. "Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Yang, Zhanying & Zhang, Jie & Zhang, Zhihui & Mei, Jun, 2023. "An improved criterion on finite-time stability for fractional-order fuzzy cellular neural networks involving leakage and discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 910-925.
    3. Alsaedi, Ahmed & Cao, Jinde & Ahmad, Bashir & Alshehri, Ahmed & Tan, Xuegang, 2022. "Synchronization of master-slave memristive neural networks via fuzzy output-based adaptive strategy," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Zhen Yang & Zhengqiu Zhang, 2022. "Finite-Time Synchronization Analysis for BAM Neural Networks with Time-Varying Delays by Applying the Maximum-Value Approach with New Inequalities," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    6. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    7. Chen, Shenglong & Yang, Jikai & Li, Zhiming & Li, Hong-Li & Hu, Cheng, 2023. "New results for dynamical analysis of fractional-order gene regulatory networks with time delay and uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2022. "Generalized Proportional Caputo Fractional Differential Equations with Delay and Practical Stability by the Razumikhin Method," Mathematics, MDPI, vol. 10(11), pages 1-15, May.
    9. Ning, Jinghua & Hua, Changchun, 2022. "H∞ output feedback control for fractional-order T-S fuzzy model with time-delay," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    10. Zhang, Zhe & Wang, Yaonan & Zhang, Jing & Ai, Zhaoyang & Liu, Feng, 2022. "Novel stability results of multivariable fractional-order system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Yang, Zhanwen & Li, Qi & Yao, Zichen, 2023. "A stability analysis for multi-term fractional delay differential equations with higher order," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2021. "Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    13. He, Jin-Man & Pei, Li-Jun, 2023. "Function matrix projection synchronization for the multi-time delayed fractional order memristor-based neural networks with parameter uncertainty," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    14. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    15. Yang, Shuai & Hu, Cheng & Yu, Juan & Jiang, Haijun, 2021. "Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Oliveira, José J., 2022. "Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    17. Du, Feifei & Lu, Jun-Guo, 2021. "New approach to finite-time stability for fractional-order BAM neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    18. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    19. Cui, Qian & Li, Lulu & Lu, Jianquan & Alofi, Abdulaziz, 2022. "Finite-time synchronization of complex dynamical networks under delayed impulsive effects," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    20. Du, Feifei & Lu, Jun-Guo, 2021. "Explicit solutions and asymptotic behaviors of Caputo discrete fractional-order equations with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.