IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2543-d868296.html
   My bibliography  Save this article

Techno-Economic Evaluation of Optimal Integration of PV Based DG with DSTATCOM Functionality with Solar Irradiance and Loading Variations

Author

Listed:
  • Ahmed Amin

    (Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Mohamed Ebeed

    (Department of Electrical Engineering, Faculty of Engineering, Sohag University, Sohag 82524, Egypt)

  • Loai Nasrat

    (Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Mokhtar Aly

    (Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8320000, Chile)

  • Emad M. Ahmed

    (Electrical Engineering Department, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
    AWCRC, Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Emad A. Mohamed

    (Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Hammad H. Alnuman

    (Electrical Engineering Department, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Amal M. Abd El Hamed

    (Electricity Department, Faculty of Technology and Education, Sohag University, Sohag 82524, Egypt)

Abstract

Nowadays, the trend of countries and their electrical sectors moves towards the inclusion of renewable distributed generators (RDGs) to diminish the use of the fossil fuel based DGs. The solar photovoltaic-based DG (PV-DG) is widely used as a clean and sustainable energy resource. Determining the best placements and ratings of the PV-DG is a significant task for the electrical systems to assess the PV-DG potentials. With the capability of the PV-DG inverters to inject the required reactive power in to the system during the night period or during cloudy weather adds the static compensation (STATCOM) functionality to the PV unit, which is being known as distributed static compensator (DSTATCOM). In the literature, there is a research gap relating the optimal allocation of the PV-DGs along with the seasonal variation of the solar irradiance. Therefore, the aim of this paper is to determine the optimal allocation and sizing of the PV-DGs along with the optimal injected reactive power by their inverters. An efficient optimization technique called Gorilla troop’s optimizer (GTO) is used to solve the optimal allocation problem of the PV-DGs with DSTATCOM functionality on a 94 bus distribution network. Three objective functions are used as a multi-objective function, including the total annual cost, the system voltage deviations, and the system stability. The simulation results show that integration of PV-DGs with the DSTATCOM functionality show the superiorities of reducing the total system cost and considerably enhancing system performance in voltages deviations and system stability compared to inclusion of the PV-DGs without the DSTATCOM functionality. The optimal integration of the PV-DGs with DSTATCOM functionality can reduce the total cost and the voltage deviations by 15.05% and 77.05%, respectively. While the total voltage stability is enhanced by 25.43% compared to the base case.

Suggested Citation

  • Ahmed Amin & Mohamed Ebeed & Loai Nasrat & Mokhtar Aly & Emad M. Ahmed & Emad A. Mohamed & Hammad H. Alnuman & Amal M. Abd El Hamed, 2022. "Techno-Economic Evaluation of Optimal Integration of PV Based DG with DSTATCOM Functionality with Solar Irradiance and Loading Variations," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2543-:d:868296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashraf Ramadan & Mohamed Ebeed & Salah Kamel & Almoataz Y. Abdelaziz & Hassan Haes Alhelou, 2021. "Scenario-Based Stochastic Framework for Optimal Planning of Distribution Systems Including Renewable-Based DG Units," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    2. Ghaffari, Abolfazl & Askarzadeh, Alireza & Fadaeinedjad, Roohollah, 2022. "Optimal allocation of energy storage systems, wind turbines and photovoltaic systems in distribution network considering flicker mitigation," Applied Energy, Elsevier, vol. 319(C).
    3. Sun, Peng & Yun, Teng & Chen, Zhe, 2021. "Multi-objective robust optimization of multi-energy microgrid with waste treatment," Renewable Energy, Elsevier, vol. 178(C), pages 1198-1210.
    4. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    5. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    6. Mohamed Abdel-Basset & Reda Mohamed & Victor Chang, 2021. "An Efficient Parameter Estimation Algorithm for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(21), pages 1-23, November.
    7. Ali, E.S. & Abd Elazim, S.M. & Abdelaziz, A.Y., 2016. "Ant Lion Optimization Algorithm for Renewable Distributed Generations," Energy, Elsevier, vol. 116(P1), pages 445-458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed T. Hachemi & Fares Sadaoui & Abdelhakim Saim & Mohamed Ebeed & Hossam E. A. Abbou & Salem Arif, 2023. "Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response," Sustainability, MDPI, vol. 15(24), pages 1-34, December.
    2. Evangelos E. Pompodakis & Georgios I. Orfanoudakis & Yiannis Katsigiannis & Emmanouel Karapidakis, 2024. "Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece," Energies, MDPI, vol. 17(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    2. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.
    3. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    4. Hamza Mubarak & Nurulafiqah Nadzirah Mansor & Hazlie Mokhlis & Mahazani Mohamad & Hasmaini Mohamad & Munir Azam Muhammad & Mohammad Al Samman & Suhail Afzal, 2021. "Optimum Distribution System Expansion Planning Incorporating DG Based on N-1 Criterion for Sustainable System," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    5. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    6. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
    7. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    8. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    9. Jayashree Piri & Puspanjali Mohapatra & Biswaranjan Acharya & Farhad Soleimanian Gharehchopogh & Vassilis C. Gerogiannis & Andreas Kanavos & Stella Manika, 2022. "Feature Selection Using Artificial Gorilla Troop Optimization for Biomedical Data: A Case Analysis with COVID-19 Data," Mathematics, MDPI, vol. 10(15), pages 1-31, August.
    10. Xinghua Liu & Siwei Qiao & Zhiwei Liu, 2023. "A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies," Energies, MDPI, vol. 16(5), pages 1-22, February.
    11. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    12. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    13. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    14. Ruifeng Shi & Yuqin Gao & Jin Ning & Keyi Tang & Limin Jia, 2023. "Research on Highway Self-Consistent Energy System Planning with Uncertain Wind and Photovoltaic Power Output," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    15. Ragab El-Sehiemy & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ahmed Ginidi, 2021. "Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    16. Ayman Awad & Hussein Abdel-Mawgoud & Salah Kamel & Abdalla A. Ibrahim & Francisco Jurado, 2021. "Developing a Hybrid Optimization Algorithm for Optimal Allocation of Renewable DGs in Distribution Network," Clean Technol., MDPI, vol. 3(2), pages 1-15, May.
    17. Shi, Xingping & He, Qing & Liu, Yixue & An, Xugang & Zhang, Qianxu & Du, Dongmei, 2024. "Thermodynamic and techno-economic analysis of a novel compressed air energy storage system coupled with coal-fired power unit," Energy, Elsevier, vol. 292(C).
    18. Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
    19. Abdulgader Alsharif & Chee Wei Tan & Razman Ayop & Ahmed Al Smin & Abdussalam Ali Ahmed & Farag Hamed Kuwil & Mohamed Mohamed Khaleel, 2023. "Impact of Electric Vehicle on Residential Power Distribution Considering Energy Management Strategy and Stochastic Monte Carlo Algorithm," Energies, MDPI, vol. 16(3), pages 1-22, January.
    20. Iraj Faraji Davoudkhani & Farhad Zishan & Saeedeh Mansouri & Farzad Abdollahpour & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya, 2023. "Allocation of Renewable Energy Resources in Distribution Systems While Considering the Uncertainty of Wind and Solar Resources via the Multi-Objective Salp Swarm Algorithm," Energies, MDPI, vol. 16(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2543-:d:868296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.