IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v390y2021ics0096300320306160.html
   My bibliography  Save this article

Breather-type and multi-wave solutions for (2+1)-dimensional nonlocal Gardner equation

Author

Listed:
  • Sağlam Özkan, Yeşim
  • Yaşar, Emrullah

Abstract

In this work, different kinds of solutions including breather-type and multi-wave solutions are obtained for the (2+1)-dimensional Gardner equation by using bilinear form, the extended homoclinic test approach and three-wave method. We obtained the coefficient conditions in solution ansatz for the existing of breather and multi-wave solutions. By selecting appropriate values of the parameter, three dimensional, contour and density plots of solutions are drawn in order to better understand the dynamic behaviors of considered physical phenomena.

Suggested Citation

  • Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "Breather-type and multi-wave solutions for (2+1)-dimensional nonlocal Gardner equation," Applied Mathematics and Computation, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:apmaco:v:390:y:2021:i:c:s0096300320306160
    DOI: 10.1016/j.amc.2020.125663
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320306160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    2. Chen, Yong & Yan, Zhenya, 2005. "New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 399-406.
    3. Seadawy, Aly R., 2016. "Stability analysis solutions for nonlinear three-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation in a magnetized electron–positron plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 44-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Run-Fa & Li, Ming-Chu & Albishari, Mohammed & Zheng, Fu-Chang & Lan, Zhong-Zhou, 2021. "Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation," Applied Mathematics and Computation, Elsevier, vol. 403(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    2. Chaudry Masood Khalique & Oke Davies Adeyemo, 2020. "Closed-Form Solutions and Conserved Vectors of a Generalized (3+1)-Dimensional Breaking Soliton Equation of Engineering and Nonlinear Science," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
    3. Seadawy, Aly R. & Iqbal, Mujahid & Lu, Dianchen, 2020. "Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    4. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    5. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    6. Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    7. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    8. Yang, Lijuan & Du, Xianyun & Yang, Qiongfen, 2016. "New variable separation solutions to the (2 + 1)-dimensional Burgers equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1271-1275.
    9. Zayed, E.M.E. & Alurrfi, K.A.E., 2016. "Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 111-131.
    10. El-Sheikh, Mohamed M.A. & Seadawy, Aly R. & Ahmed, Hamdy M. & Arnous, Ahmed H. & Rabie, Wafaa B., 2020. "Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    11. Andrei D. Polyanin, 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions," Mathematics, MDPI, vol. 7(5), pages 1-19, April.
    12. Kudryashov, Nikolay A. & Ryabov, Pavel N., 2014. "Exact solutions of one pattern formation model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1090-1093.
    13. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Navickas, Z. & Ragulskis, M. & Telksnys, T., 2016. "Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 333-338.
    15. Ma, Wen-Xiu & Lee, Jyh-Hao, 2009. "A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1356-1363.
    16. Nikolay A. Kudryashov & Sofia F. Lavrova, 2024. "Painlevé Analysis of the Traveling Wave Reduction of the Third-Order Derivative Nonlinear Schrödinger Equation," Mathematics, MDPI, vol. 12(11), pages 1-13, May.
    17. Çelik, Nisa & Tetik, Duygu, 2024. "New dynamical analysis of the exact traveling wave solutions to a (3+1)-dimensional Gardner-KP equation by three efficient architecture," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    18. Nickel, J., 2007. "Travelling wave solutions to the Kuramoto–Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1376-1382.
    19. Petar Popivanov & Angela Slavova, 2024. "Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form," Mathematics, MDPI, vol. 12(7), pages 1-24, March.
    20. Ranković, Dragana & Zdravković, Slobodan, 2022. "Two component model of microtubules – subsonic and supersonic solitary waves," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:390:y:2021:i:c:s0096300320306160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.