IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.02199.html
   My bibliography  Save this paper

When Dimensionality Hurts: The Role of LLM Embedding Compression for Noisy Regression Tasks

Author

Listed:
  • Felix Drinkall
  • Janet B. Pierrehumbert
  • Stefan Zohren

Abstract

Large language models (LLMs) have shown remarkable success in language modelling due to scaling laws found in model size and the hidden dimension of the model's text representation. Yet, we demonstrate that compressed representations of text can yield better performance in LLM-based regression tasks. In this paper, we compare the relative performance of embedding compression in three different signal-to-noise contexts: financial return prediction, writing quality assessment and review scoring. Our results show that compressing embeddings, in a minimally supervised manner using an autoencoder's hidden representation, can mitigate overfitting and improve performance on noisy tasks, such as financial return prediction; but that compression reduces performance on tasks that have high causal dependencies between the input and target data. Our results suggest that the success of interpretable compressed representations such as sentiment may be due to a regularising effect.

Suggested Citation

  • Felix Drinkall & Janet B. Pierrehumbert & Stefan Zohren, 2025. "When Dimensionality Hurts: The Role of LLM Embedding Compression for Noisy Regression Tasks," Papers 2502.02199, arXiv.org.
  • Handle: RePEc:arx:papers:2502.02199
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.02199
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    2. Marie-Hélène Roy & Denis Larocque, 2012. "Robustness of random forests for regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 993-1006, December.
    3. Bledar Fazlija & Pedro Harder, 2022. "Using Financial News Sentiment for Stock Price Direction Prediction," Mathematics, MDPI, vol. 10(13), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, Xiaomeng & Salibián-Barrera, Matías, 2021. "Robust boosting for regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    2. Costola, Michele & Hinz, Oliver & Nofer, Michael & Pelizzon, Loriana, 2023. "Machine learning sentiment analysis, COVID-19 news and stock market reactions," Research in International Business and Finance, Elsevier, vol. 64(C).
    3. Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
    4. Meng Zhang & Jiatong Ling & Buyun Tang & Shaohua Dong & Laibin Zhang, 2022. "A Data-Driven Based Method for Pipeline Additional Stress Prediction Subject to Landslide Geohazards," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    5. Denisa Millo & Blerina Vika & Nevila Baci, 2024. "Integrating Natural Language Processing Techniques of Text Mining Into Financial System: Applications and Limitations," Papers 2412.20438, arXiv.org.
    6. Yujia Hu, 2023. "A Heuristic Approach to Forecasting and Selection of a Portfolio with Extra High Dimensions," Mathematics, MDPI, vol. 11(6), pages 1-21, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.02199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.