IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i11p1852-d826371.html
   My bibliography  Save this article

Existence and Uniqueness of Solutions to Four-Point Impulsive Fractional Differential Equations with p -Laplacian Operator

Author

Listed:
  • Limin Chu

    (School of Mathematics and Statistics, Yili Normal University, Yining 835000, China
    School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, China)

  • Weimin Hu

    (School of Mathematics and Statistics, Yili Normal University, Yining 835000, China
    Institute of Applied Mathematics, Yili Normal University, Yining 835000, China)

  • Youhui Su

    (School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, China)

  • Yongzhen Yun

    (School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, China)

Abstract

In this paper, by using fixed-point theorems, the existence and uniqueness of positive solutions to a class of four-point impulsive fractional differential equations with p -Laplacian operators are studied. In addition, three examples are given to justify the conclusion. The interest of this paper is to study impulsive fractional differential equations with p -Laplacian operators.

Suggested Citation

  • Limin Chu & Weimin Hu & Youhui Su & Yongzhen Yun, 2022. "Existence and Uniqueness of Solutions to Four-Point Impulsive Fractional Differential Equations with p -Laplacian Operator," Mathematics, MDPI, vol. 10(11), pages 1-30, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1852-:d:826371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/11/1852/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/11/1852/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Fares Kamache & Rafik Guefaifia & Salah Boulaaras & Asma Alharbi, 2020. "Existence of Weak Solutions for a New Class of Fractional p -Laplacian Boundary Value Systems," Mathematics, MDPI, vol. 8(4), pages 1-18, March.
    3. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Yong Wu & Bouali Tahar & Guefaifia Rafik & Abita Rahmoune & Libo Yang, 2022. "The Existence and Multiplicity of Homoclinic Solutions for a Fractional Discrete p −Laplacian Equation," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    5. Ilkay Yaslan Karaca & Fatma Tokmak, 2014. "Existence of Solutions for Nonlinear Impulsive Fractional Differential Equations with -Laplacian Operator," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    3. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Mohammed K. A. Kaabar & Mehdi Shabibi & Jehad Alzabut & Sina Etemad & Weerawat Sudsutad & Francisco Martínez & Shahram Rezapour, 2021. "Investigation of the Fractional Strongly Singular Thermostat Model via Fixed Point Techniques," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    5. Abboubakar, Hamadjam & Kouchéré Guidzavaï, Albert & Yangla, Joseph & Damakoa, Irépran & Mouangue, Ruben, 2021. "Mathematical modeling and projections of a vector-borne disease with optimal control strategies: A case study of the Chikungunya in Chad," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    8. Shahram Rezapour & Chernet Tuge Deressa & Azhar Hussain & Sina Etemad & Reny George & Bashir Ahmad, 2022. "A Theoretical Analysis of a Fractional Multi-Dimensional System of Boundary Value Problems on the Methylpropane Graph via Fixed Point Technique," Mathematics, MDPI, vol. 10(4), pages 1-26, February.
    9. Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    12. Mahmoud, Emad E. & Trikha, Pushali & Jahanzaib, Lone Seth & Almaghrabi, Omar A., 2020. "Dynamical analysis and chaos control of the fractional chaotic ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    14. Alam, Mehboob & Zada, Akbar, 2022. "Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    15. Shahram Rezapour & Sina Etemad & Ravi P. Agarwal & Kamsing Nonlaopon, 2022. "On a Lyapunov-Type Inequality for Control of a ψ -Model Thermostat and the Existence of Its Solutions," Mathematics, MDPI, vol. 10(21), pages 1-11, October.
    16. Nasibeh Mollahasani, 2024. "A Hybrid Spectral-Finite Difference Method for Numerical Pricing of Time-Fractional Black–Scholes Equation," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 841-869, August.
    17. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    18. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    19. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    20. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1852-:d:826371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.