IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i11p1804-d823663.html
   My bibliography  Save this article

A Stochastic Multi-Strain SIR Model with Two-Dose Vaccination Rate

Author

Listed:
  • Yen-Chang Chang

    (Center for General Education, National Tsing Hua University, Hsinchu City 300, Taiwan
    These authors contributed equally to this work.)

  • Ching-Ti Liu

    (Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
    These authors contributed equally to this work.)

Abstract

Infectious diseases remain a substantial public health concern as they are among the leading causes of death. Immunization by vaccination can reduce the infectious diseases-related risk of suffering and death. Many countries have developed COVID-19 vaccines in the past two years to control the COVID-19 pandemic. Due to an urgent need for COVID-19 vaccines, the vaccine administration of COVID-19 is in the mode of emergency use authorization to facilitate the availability and use of vaccines. Therefore, the vaccine development time is extraordinarily short, but administering two doses is generally recommended within a specific time to achieve sufficient protection. However, it may be essential to identify an appropriate interval between two vaccinations. We constructed a stochastic multi-strain SIR model for a two-dose vaccine administration to address this issue. We introduced randomness into this model mainly through the transmission rate parameters. We discussed the uniqueness of the positive solution to the model and presented the conditions for the extinction and persistence of disease. In addition, we explored the optimal cost to improve the epidemic based on two cost functions. The numerical simulations showed that the administration rate of both vaccine doses had a significant effect on disease transmission.

Suggested Citation

  • Yen-Chang Chang & Ching-Ti Liu, 2022. "A Stochastic Multi-Strain SIR Model with Two-Dose Vaccination Rate," Mathematics, MDPI, vol. 10(11), pages 1-22, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1804-:d:823663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/11/1804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/11/1804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simón A. Rella & Yuliya A. Kulikova & Emmanouil T. Dermitzakis & Fyodor A. Kondrashov, 2021. "Rates of SARS-COV-2 transmission and vaccination impact the fate of vaccine-resistant strains," Working Papers 2129, Banco de España.
    2. Lili Kong & Luping Li & Shugui Kang & Youjun Liu & Wenying Feng & Fahad Al Basir, 2022. "Dynamic Behavior of a Stochastic Tungiasis Model for Public Health Education," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abolfazl Mollalo & Alireza Mohammadi & Sara Mavaddati & Behzad Kiani, 2021. "Spatial Analysis of COVID-19 Vaccination: A Scoping Review," IJERPH, MDPI, vol. 18(22), pages 1-14, November.
    2. Saba Wajeeh & Abhishek Lal & Naseer Ahmed & Md. Ibrahim Khalil & Afsheen Maqsood & Akram Mojidea M Alshammari & Abdulelah Zaid Alshammari & Meshari Musallam Mohammed Alsharari & Abdulelah Hamdan Alrus, 2021. "Operational Implications and Risk Assessment of COVID-19 in Dental Practices," IJERPH, MDPI, vol. 18(22), pages 1-13, November.
    3. Xiyun Zhang & Zhongyuan Ruan & Muhua Zheng & Jie Zhou & Stefano Boccaletti & Baruch Barzel, 2022. "Epidemic spreading under mutually independent intra- and inter-host pathogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Shnip, A.I. & Trigger, S.A., 2024. "On the repeated epidemic waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    5. Marlon Fritz & Thomas Gries & Margarete Redlin, 2023. "The effectiveness of vaccination, testing, and lockdown strategies against COVID-19," International Journal of Health Economics and Management, Springer, vol. 23(4), pages 585-607, December.
    6. Patrick Mellacher, 2022. "Endogenous viral mutations, evolutionary selection, and containment policy design," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(3), pages 801-825, July.
    7. Gabriela Lobinska & Ady Pauzner & Arne Traulsen & Yitzhak Pilpel & Martin A. Nowak, 2022. "Evolution of resistance to COVID-19 vaccination with dynamic social distancing," Nature Human Behaviour, Nature, vol. 6(2), pages 193-206, February.
    8. S. A. Trigger & A. M. Ignatov, 2022. "Strain-stream model of epidemic spread in application to COVID-19," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-8, November.
    9. Gopal Krishna Roy, 2022. "An Economic Case for Waiving Intellectual Property Rights on Covid Vaccines," India Quarterly: A Journal of International Affairs, , vol. 78(1), pages 143-147, March.
    10. Ioannis Alexandros Charitos & Andrea Ballini & Roberto Lovero & Francesca Castellaneta & Marica Colella & Salvatore Scacco & Stefania Cantore & Roberto Arrigoni & Filiberto Mastrangelo & Mario Dioguar, 2022. "Update on COVID-19 and Effectiveness of a Vaccination Campaign in a Global Context," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    11. Grass, D. & Wrzaczek, S. & Caulkins, J.P. & Feichtinger, G. & Hartl, R.F. & Kort, P.M. & Kuhn, M. & Prskawetz, A. & Sanchez-Romero, M. & Seidl, A., 2024. "Riding the waves from epidemic to endemic: Viral mutations, immunological change and policy responses," Theoretical Population Biology, Elsevier, vol. 156(C), pages 46-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1804-:d:823663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.