IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1768-d821212.html
   My bibliography  Save this article

An Approach to Assessing Spatial Coherence of Current and Voltage Signals in Electrical Networks

Author

Listed:
  • Pavel Ilyushin

    (Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

  • Aleksandr Kulikov

    (Department of Electroenergetics, Power Supply and Power Electronics, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 603950 Nizhny Novgorod, Russia)

  • Konstantin Suslov

    (Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia)

  • Sergey Filippov

    (Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

Abstract

In the context of energy industry decentralization, electrical networks encounter deviations of power quality indices (PQI), including violations of the sinusoidality of current and voltage signals, which increase errors in the joint digital processing of spatially separated signals in digital devices. This paper addresses specific features of using the concept of spatial coherence in the measurement and digital processing of current and voltage signals. Methods for assessing the coherence of current and voltage signals during synchronized measurements are considered for the case of PQI deviation. The example of a double-ended transmission line fault location (hereafter, DTLFL) demonstrates that the lower the cross-correlation coefficient, the higher the error and the lower the accuracy of calculating the distance to the fault site. The nature of the influence of spatial coherence violations on errors in DTLFL depends on the expression used to calculate the distance to the fault point. The application of a normalized cross-correlation coefficient for finding errors in the digital processing of current and voltage signals, in the case of spatial coherence violation, was substantiated. The influence of interharmonics and noise on errors in DTLFL, in the case of violations of spatial coherence of signals, was investigated. The magnitude of distortions and error in estimating the current and voltage amplitude depends on the ratio between the amplitudes and phases of the fundamental and distorting interharmonics. Filtration of the original and decimated signals based on the discrete Fourier transform eliminates the noise components of the power frequency harmonics.

Suggested Citation

  • Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov & Sergey Filippov, 2022. "An Approach to Assessing Spatial Coherence of Current and Voltage Signals in Electrical Networks," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1768-:d:821212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Lavrik & Yuri Zhukovskiy & Pavel Tcvetkov, 2021. "Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting," Energies, MDPI, vol. 14(16), pages 1-19, August.
    2. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    3. Ilia Shushpanov & Konstantin Suslov & Pavel Ilyushin & Denis N. Sidorov, 2021. "Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric," Energies, MDPI, vol. 14(19), pages 1-24, September.
    4. Angel Arranz-Gimon & Angel Zorita-Lamadrid & Daniel Morinigo-Sotelo & Oscar Duque-Perez, 2021. "A Review of Total Harmonic Distortion Factors for the Measurement of Harmonic and Interharmonic Pollution in Modern Power Systems," Energies, MDPI, vol. 14(20), pages 1-38, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denis Sidorov, 2023. "Preface to “Model Predictive Control and Optimization for Cyber-Physical Systems”," Mathematics, MDPI, vol. 11(4), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Ilyushin & Sergey Filippov & Aleksandr Kulikov & Konstantin Suslov & Dmitriy Karamov, 2022. "Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities," Energies, MDPI, vol. 15(17), pages 1-21, August.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    4. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    5. Krzysztof Lowczowski & Jaroslaw Gielniak & Zbigniew Nadolny & Magdalena Udzik, 2024. "Analysis of the Impact of Volt/VAR Control on Harmonics Content and Alternative Harmonic Mitigation Methods," Energies, MDPI, vol. 17(22), pages 1-26, November.
    6. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    7. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    8. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    9. Pannee Suanpang & Pattanaphong Pothipassa & Kittisak Jermsittiparsert & Titiya Netwong, 2022. "Integration of Kouprey-Inspired Optimization Algorithms with Smart Energy Nodes for Sustainable Energy Management of Agricultural Orchards," Energies, MDPI, vol. 15(8), pages 1-18, April.
    10. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    11. Shengquan Zhao & Yaozong Liu, 2022. "Waveform Quality Evaluation Method of Variable-Frequency Current Based on Curve Fitting," Energies, MDPI, vol. 15(20), pages 1-16, October.
    12. Mittelviefhaus, Moritz & Pareschi, Giacomo & Allan, James & Georges, Gil & Boulouchos, Konstantinos, 2021. "Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation," Applied Energy, Elsevier, vol. 301(C).
    13. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    14. Yuriy Leonidovich Zhukovskiy & Margarita Sergeevna Kovalchuk & Daria Evgenievna Batueva & Nikita Dmitrievich Senchilo, 2021. "Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    15. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    16. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    17. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    18. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    19. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.
    20. Lakshmi Syamala & Deepa Sankar & Suhara Ekkarakkudy Makkar & Bos Mathew Jos & Mathew Kallarackal, 2022. "Hysteresis Based Quasi Fixed Frequency Current Control of Single Phase Full Bridge Grid Integrated Voltage Source Inverter," Energies, MDPI, vol. 15(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1768-:d:821212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.