IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2021i1p13-d707713.html
   My bibliography  Save this article

A Districting Application with a Quality of Service Objective

Author

Listed:
  • Eduardo Álvarez-Miranda

    (School of Economics and Business, Universidad de Talca, Talca 3460000, Chile)

  • Jordi Pereira

    (Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar 2520000, Chile
    UPF Barcelona School of Management, Universitat Pompeu Fabra, C. Balmes 132-134, 08008 Barcelona, Spain)

Abstract

E-commerce sales have led to a considerable increase in the demand for last-mile delivery companies, revealing several problems in their logistics processes. Among these problems, are not meeting delivery deadlines. For example, in Chile, the national consumer service (SERNAC) indicated that in 2018, late deliveries represented 23% of complaints in retail online sales and were the second most common reason for complaints. Some of the causes are incorrectly designed delivery zones because in many cases, these delivery zones do not account for the demographic growth of cities. The result is an imbalanced workload between different zones, which leads to some resources being idle while others fail to meet their workload in satisfactory conditions. The present work proposes a hybrid method for designing delivery zones with an objective based on improving the quality of express delivery services. The proposed method combines a preprocess based on the grouping of demand in areas according to the structure of the territory, a heuristic that generates multiple candidates for the distribution zones, and a mathematical model that combines the different distribution zones generated to obtain a final territorial design. To verify the applicability of the proposed method, a case study is considered based on the real situation of a Chilean courier company with low service fulfillment in its express deliveries. The results obtained from the computational experiments show the applicability of the method, highlighting the validity of the aggregation procedure and improvements in the results obtained using the hybrid method compared to the initial heuristic. The final solution improves the ability to meet the conditions associated with express deliveries, compared with the current situation, by 12 percentage points. The results also allow an indicative sample of the critical service factors of a company to be obtained, identifying the effects of possible changes in demand or service conditions.

Suggested Citation

  • Eduardo Álvarez-Miranda & Jordi Pereira, 2021. "A Districting Application with a Quality of Service Objective," Mathematics, MDPI, vol. 10(1), pages 1-21, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2021:i:1:p:13-:d:707713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/1/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/1/13/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teresa Gajewska & Dominik Zimon & Grzegorz Kaczor & Peter Madzík, 2019. "The impact of the level of customer satisfaction on the quality of e-commerce services," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 69(4), pages 666-684, December.
    2. Roel Gevaers & Eddy Van de Voorde & Thierry Vanelslander, 2011. "Characteristics and Typology of Last-mile Logistics from an Innovation Perspective in an Urban Context," Chapters, in: Cathy Macharis & Sandra Melo (ed.), City Distribution and Urban Freight Transport, chapter 3, Edward Elgar Publishing.
    3. Chopra, Sunil, 2003. "Designing the distribution network in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(2), pages 123-140, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janjevic, Milena & Winkenbach, Matthias, 2020. "Characterizing urban last-mile distribution strategies in mature and emerging e-commerce markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 164-196.
    2. Akeb, Hakim & Moncef, Btissam & Durand, Bruno, 2018. "Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 223-233.
    3. Park, Hyeongjun & Park, Dongjoo & Jeong, In-Jae, 2016. "An effects analysis of logistics collaboration in last-mile networks for CEP delivery services," Transport Policy, Elsevier, vol. 50(C), pages 115-125.
    4. Lyons, Andrew Charles & Um, Juneho & Sharifi, Hossein, 2020. "Product variety, customisation and business process performance: A mixed-methods approach to understanding their relationships," International Journal of Production Economics, Elsevier, vol. 221(C).
    5. Péter Bajor & Adrián Horváth, 2008. "The role of decision-making parameters in constructing and re-engineering of distribution networks," Proceedings Papers of Business Sciences: Symposium for Young Researchers (FIKUSZ) 2008, in: László Áron Kóczy (ed.),FIKUSZ 2008 Business Sciences - Symposium for Young Researchers: Proceedings, pages 55-63, Óbuda University, Keleti Faculty of Business and Management.
    6. H. Khorshidian & M. Akbarpour Shirazi & S. M. T. Fatemi Ghomi, 2019. "An intelligent truck scheduling and transportation planning optimization model for product portfolio in a cross-dock," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 163-184, January.
    7. Holzapfel, Andreas & Potoczki, Tobias & Kuhn, Heinrich, 2023. "Designing the breadth and depth of distribution networks in the retail trade," International Journal of Production Economics, Elsevier, vol. 257(C).
    8. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Beckers, Joris & Cárdenas, Ivan & Verhetsel, Ann, 2018. "Identifying the geography of online shopping adoption in Belgium," Journal of Retailing and Consumer Services, Elsevier, vol. 45(C), pages 33-41.
    10. Feng Li & Zhi-Ping Fan & Bing-Bing Cao & Xin Li, 2020. "Logistics Service Mode Selection for Last Mile Delivery: An Analysis Method Considering Customer Utility and Delivery Service Cost," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    11. Chiara Mazzocchi & Luigi Orsi & Guido Sali, 2021. "Consumers’ Attitudes for Sustainable Mountain Cheese," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    12. Elvis Attakora-Amaniampong & Appau Williams Miller & Callistus Tengan, 2021. "All-Inclusiveness and End-User Satisfaction in Student Housing Nexus: Cognitive Dissonance Perspective," AfRES 2021-003, African Real Estate Society (AfRES).
    13. Leung, Abraham & Lachapelle, Ugo & Burke, Matthew, 2023. "Spatio-temporal analysis of Australia Post parcel locker use during the initial system growth phase in Queensland (2013–2017)," Journal of Transport Geography, Elsevier, vol. 110(C).
    14. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    15. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    16. Tianming Gao & Vasilii Erokhin & Aleksandr Arskiy, 2019. "Dynamic Optimization of Fuel and Logistics Costs as a Tool in Pursuing Economic Sustainability of a Farm," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    17. Sheikh-Zadeh, Alireza & Rossetti, Manuel D. & Scott, Marc A., 2021. "Performance-based inventory classification methods for large-Scale multi-echelon replenishment systems," Omega, Elsevier, vol. 101(C).
    18. Sodhi, ManMohan S. & Tang, Christopher S., 2014. "Guiding the next generation of doctoral students in operations management," International Journal of Production Economics, Elsevier, vol. 150(C), pages 28-36.
    19. Khalid Aljohani, 2023. "Optimizing the Distribution Network of a Bakery Facility: A Reduced Travelled Distance and Food-Waste Minimization Perspective," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    20. Hsu, Chaug-Ing & Li, Hui-Chieh, 2009. "An integrated plant capacity and production planning model for high-tech manufacturing firms with economies of scale," International Journal of Production Economics, Elsevier, vol. 118(2), pages 486-500, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2021:i:1:p:13-:d:707713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.