IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v148y2021ics1366554521000399.html
   My bibliography  Save this article

Optimizing e-commerce last-mile vehicle routing and scheduling under uncertain customer presence

Author

Listed:
  • Özarık, Sami Serkan
  • Veelenturf, Lucas P.
  • Woensel, Tom Van
  • Laporte, Gilbert

Abstract

The recent increase in online orders in e-commerce leads to logistical challenges such as low hit rates (proportion of successful deliveries). We consider last-mile vehicle routing and scheduling problems in which customer presence probability data are taken into account. The aim is to reduce the expected cost resulting from low hit rates by considering both routing and scheduling decisions simultaneously in the planning phase. We model the problem and solve it by the means of an adaptive large neighborhood search metaheuristic which iterates between the routing and scheduling components of the problem. Computational experiments indicate that using customer-related presence data significantly can yield savings as large as 40% in system-wide costs compared with those of traditional vehicle routing solutions.

Suggested Citation

  • Özarık, Sami Serkan & Veelenturf, Lucas P. & Woensel, Tom Van & Laporte, Gilbert, 2021. "Optimizing e-commerce last-mile vehicle routing and scheduling under uncertain customer presence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:transe:v:148:y:2021:i:c:s1366554521000399
    DOI: 10.1016/j.tre.2021.102263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521000399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Ozbaygin, Gizem & Ekin Karasan, Oya & Savelsbergh, Martin & Yaman, Hande, 2017. "A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 115-137.
    3. Irnich, S. & Schneider, M. & Vigo, D., 2014. "Four Variants of the Vehicle Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63514, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Potvin, Jean-Yves & Rousseau, Jean-Marc, 1993. "A parallel route building algorithm for the vehicle routing and scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 66(3), pages 331-340, May.
    5. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    6. Ann Melissa Campbell & Martin Savelsbergh, 2006. "Incentive Schemes for Attended Home Delivery Services," Transportation Science, INFORMS, vol. 40(3), pages 327-341, August.
    7. Ponce, Diego & Contreras, Ivan & Laporte, Gilbert, 2020. "E-commerce shipping through a third-party supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    8. Thomas R. Visser & Remy Spliet, 2020. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(4), pages 1091-1112, July.
    9. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.
    10. Barenji, Ali Vatankhah & Wang, W.M. & Li, Zhi & Guerra-Zubiaga, David A., 2019. "Intelligent E-commerce logistics platform using hybrid agent based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 15-31.
    11. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    12. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    13. Florio, Alexandre M. & Feillet, Dominique & Hartl, Richard F., 2018. "The delivery problem: Optimizing hit rates in e-commerce deliveries," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 455-472.
    14. Maaike Hoogeboom & Wout Dullaert & David Lai & Daniele Vigo, 2020. "Efficient Neighborhood Evaluations for the Vehicle Routing Problem with Multiple Time Windows," Transportation Science, INFORMS, vol. 54(2), pages 400-416, March.
    15. Roel Gevaers & Eddy Van de Voorde & Thierry Vanelslander, 2011. "Characteristics and Typology of Last-mile Logistics from an Innovation Perspective in an Urban Context," Chapters, in: Cathy Macharis & Sandra Melo (ed.), City Distribution and Urban Freight Transport, chapter 3, Edward Elgar Publishing.
    16. Shenle Pan & Vaggelis Giannikas & Yufei Han & Etta Grover-Silva & Bin Qiao, 2017. "Using Customer-related Data to Enhance E-grocery Home Delivery," Post-Print hal-01482901, HAL.
    17. Maria Battarra & Güneş Erdoğan & Daniele Vigo, 2014. "Exact Algorithms for the Clustered Vehicle Routing Problem," Operations Research, INFORMS, vol. 62(1), pages 58-71, February.
    18. Tang, Christopher S. & Veelenturf, Lucas P., 2019. "The strategic role of logistics in the industry 4.0 era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshihiro Osaragi & Yuya Taguchi & Narushige Shiode & Shino Shiode, 2023. "Evaluation of a Team-Based Collection and Delivery Operation," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    2. Rhandal Masteguim & Claudio B. Cunha, 2022. "An Optimization-Based Approach to Evaluate the Operational and Environmental Impacts of Pick-Up Points on E-Commerce Urban Last-Mile Distribution: A Case Study in São Paulo, Brazil," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    3. Yin, Jiateng & Wang, Miao & D’Ariano, Andrea & Zhang, Jinlei & Yang, Lixing, 2023. "Synchronization of train timetables in an urban rail network: A bi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    4. Özarık, Sami Serkan & Lurkin, Virginie & Veelenturf, Lucas P. & Van Woensel, Tom & Laporte, Gilbert, 2023. "An Adaptive Large Neighborhood Search heuristic for last-mile deliveries under stochastic customer availability and multiple visits," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 194-220.
    5. Pegado-Bardayo, Ana & Lorenzo-Espejo, Antonio & Muñuzuri, Jesús & Aparicio-Ruiz, Pablo, 2023. "A data-driven decision support system for service completion prediction in last mile logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    6. Ji, Bin & Zhang, Dezhi & Zhang, Zheng & Yu, Samson S. & Van Woensel, Tom, 2022. "The generalized serial-lock scheduling problem on inland waterway: A novel decomposition-based solution framework and efficient heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    2. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.
    3. Maaike Hoogeboom & Wout Dullaert & David Lai & Daniele Vigo, 2020. "Efficient Neighborhood Evaluations for the Vehicle Routing Problem with Multiple Time Windows," Transportation Science, INFORMS, vol. 54(2), pages 400-416, March.
    4. Rincon-Garcia, Nicolas & Waterson, Ben & Cherrett, Tom J. & Salazar-Arrieta, Fernando, 2020. "A metaheuristic for the time-dependent vehicle routing problem considering driving hours regulations – An application in city logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 429-446.
    5. Özarık, Sami Serkan & Lurkin, Virginie & Veelenturf, Lucas P. & Van Woensel, Tom & Laporte, Gilbert, 2023. "An Adaptive Large Neighborhood Search heuristic for last-mile deliveries under stochastic customer availability and multiple visits," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 194-220.
    6. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    7. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    8. Florio, Alexandre M. & Feillet, Dominique & Hartl, Richard F., 2018. "The delivery problem: Optimizing hit rates in e-commerce deliveries," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 455-472.
    9. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    10. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    11. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    12. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    13. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    14. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    16. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    17. Ali, Ousmane & Côté, Jean-François & Coelho, Leandro C., 2021. "Models and algorithms for the delivery and installation routing problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 162-177.
    18. Said Dabia & Stefan Ropke & Tom van Woensel, 2019. "Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts," Transportation Science, INFORMS, vol. 53(5), pages 1354-1371, September.
    19. Henriette Koch & Andreas Bortfeldt & Gerhard Wäscher, 2017. "A hybrid solution approach for the 3L-VRP with simultaneous delivery and pickups," FEMM Working Papers 170005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    20. Franceschetti, Anna & Demir, Emrah & Honhon, Dorothée & Van Woensel, Tom & Laporte, Gilbert & Stobbe, Mark, 2017. "A metaheuristic for the time-dependent pollution-routing problem," European Journal of Operational Research, Elsevier, vol. 259(3), pages 972-991.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:148:y:2021:i:c:s1366554521000399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.