IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v9y2025i1p6-d1559717.html
   My bibliography  Save this article

Topological Resilience of Shipping Alliances in Maritime Transportation Networks

Author

Listed:
  • Tiago Novaes Mathias

    (Infrastructure DX Engineering Department, Port and Airport Research Institute, Yokosuka 239-0826, Japan)

  • Yoshihisa Sugimura

    (Graduate School of Maritime Sciences, Kobe University, Kobe 658-0022, Japan)

  • Tomoya Kawasaki

    (Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan)

  • Yasuhiro Akakura

    (Graduate School of Management, Kyoto University, Kyoto 606-8501, Japan)

Abstract

Background : The resilience of shipping alliances within the global maritime container network (GMCN) has critical implications for global trade. This study examines the topological robustness of strategic alliances (SAs) in liner shipping, focusing on their structural properties and responses to disruptions. Methods : Using pre-2019 container vessel schedule data, we constructed a weighted node-edge network model of the GMCN. Centrality metrics were computed to identify critical nodes, and simulations were conducted to evaluate network robustness under random failures (RFs) and targeted attacks (TAs). Results : The results highlight the GMCN’s scale-free topology, which fosters resilience against RFs but exposes vulnerabilities to TAs on high-centrality nodes like Singapore and Shanghai. Among alliances, 2M and Ocean demonstrated superior resilience, attributed to strategic port selection and extensive coverage, yet their reliance on central hubs presents significant risks. Conclusions : This study underscores the importance of alliance-specific strategies, such as infrastructure investments and redundancy planning, to mitigate vulnerabilities. By bridging gaps in existing literature, the research provides insights for policymakers and industry stakeholders to enhance the robustness and adaptability of maritime logistics networks. These findings contribute to ensuring stable global supply chains within an evolving trade environment.

Suggested Citation

  • Tiago Novaes Mathias & Yoshihisa Sugimura & Tomoya Kawasaki & Yasuhiro Akakura, 2025. "Topological Resilience of Shipping Alliances in Maritime Transportation Networks," Logistics, MDPI, vol. 9(1), pages 1-32, January.
  • Handle: RePEc:gam:jlogis:v:9:y:2025:i:1:p:6-:d:1559717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/9/1/6/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/9/1/6/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Belarmino Adenso-Díaz & Julio Mar-Ortiz & Sebastián Lozano, 2018. "Assessing supply chain robustness to links failure," International Journal of Production Research, Taylor & Francis Journals, vol. 56(15), pages 5104-5117, August.
    2. Claudio Ferrari & Francesco Parola & Marco Benacchio, 2008. "Network economies in liner shipping: the role of home markets," Maritime Policy & Management, Taylor & Francis Journals, vol. 35(2), pages 127-143, April.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    4. Mohammad Ghorbani & Michele Acciaro & Sandra Transchel & Pierre Cariou, 2022. "Strategic alliances in container shipping: A review of the literature and future research agenda," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 439-465, June.
    5. Li, Lu & Wan, Yulai & Yang, Dong, 2024. "Do shipping alliances affect freight rates? Evidence from global satellite ship data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    6. Hercules E. Haralambides, 2019. "Gigantism in container shipping, ports and global logistics: a time-lapse into the future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 1-60, March.
    7. Asadabadi, Ali & Miller-Hooks, Elise, 2020. "Maritime port network resiliency and reliability through co-opetition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    8. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    9. Sugimura, Yoshihisa & Akakura, Yasuhiro & Yotsushima, Tatsuki & Kawasaki, Tomoya, 2023. "Evaluation of Japanese port policies through network analysis," Transport Policy, Elsevier, vol. 135(C), pages 59-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent Fedi & Oliver Faury & Patrick Rigot-Muller & Nicolas Montier, 2022. "COVID-19 as a catalyst of a new container port hierarchy in Mediterranean Sea and Northern Range," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(4), pages 747-777, December.
    2. Daniele Crotti & Claudio Ferrari & Alessio Tei, 2020. "Merger waves and alliance stability in container shipping," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(3), pages 446-472, September.
    3. Mohammad Ghorbani & Michele Acciaro & Sandra Transchel & Pierre Cariou, 2022. "Strategic alliances in container shipping: A review of the literature and future research agenda," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 439-465, June.
    4. Ricardo J. Sánchez & Daniel E. Perrotti & Alejandra Gomez Paz Fort, 2021. "Looking into the future ten years later: big full containerships and their arrival to south American ports," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-20, December.
    5. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    6. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    7. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    8. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    9. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    10. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    11. Behzad Behdani & Bart Wiegmans & Violeta Roso & Hercules Haralambides, 2020. "Port-hinterland transport and logistics: emerging trends and frontier research," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(1), pages 1-25, March.
    12. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    13. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.
    14. Valentini, Luca & Perugini, Diego & Poli, Giampiero, 2007. "The “small-world” topology of rock fracture networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 323-328.
    15. Enrico Zio & Giovanni Sansavini, 2011. "Component Criticality in Failure Cascade Processes of Network Systems," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1196-1210, August.
    16. Ryan M. Hynes & Bernardo S. Buarque & Ronald B. Davies & Dieter F. Kogler, 2020. "Hops, Skip & a Jump - The Regional Uniqueness of Beer Styles," Working Papers 202013, Geary Institute, University College Dublin.
    17. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    18. Lenore Newman & Ann Dale, 2007. "Homophily and Agency: Creating Effective Sustainable Development Networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(1), pages 79-90, February.
    19. Jan Hoffmann & Naima Saeed & Sigbjørn Sødal, 2020. "Liner shipping bilateral connectivity and its impact on South Africa’s bilateral trade flows," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(3), pages 473-499, September.
    20. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2025:i:1:p:6-:d:1559717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.