IDEAS home Printed from https://ideas.repec.org/a/gam/jlawss/v14y2025i2p19-d1615370.html
   My bibliography  Save this article

An Adaptive Conceptualisation of Artificial Intelligence and the Law, Regulation and Ethics

Author

Listed:
  • Ikpenmosa Uhumuavbi

    (Central Asian Legal Research Fellow, Tashkent State University of Law, Sayilgokh Street 35, Tashkent 100047, Uzbekistan)

Abstract

The description of a combination of technologies as ‘artificial intelligence’ (AI) is misleading. To ascribe intelligence to a statistical model without human attribution points towards an attempt at shifting legal, social, and ethical responsibilities to machines. This paper exposes the deeply flawed characterisation of AI and the unearned assumptions that are central to its current definition, characterisation, and efforts at controlling it. The contradictions in the framing of AI have been the bane of the incapacity to regulate it. A revival of applied definitional framing of AI across disciplines have produced a plethora of conceptions and inconclusiveness. Therefore, the research advances this position with two fundamental and interrelated arguments. First, the difficulty in regulating AI is tied to it characterisation as artificial intelligence. This has triggered existing and new conflicting notions of the meaning of ‘artificial’ and ‘intelligence’, which are broad and largely unsettled. Second, difficulties in developing a global consensus on responsible AI stem from this inconclusiveness. To advance these arguments, this paper utilises functional contextualism to analyse the fundamental nature and architecture of artificial intelligence and human intelligence. There is a need to establish a test for ‘artificial intelligence’ in order ensure appropriate allocation of rights, duties, and responsibilities. Therefore, this research proposes, develops, and recommends an adaptive three-elements, three-step threshold for achieving responsible artificial intelligence.

Suggested Citation

  • Ikpenmosa Uhumuavbi, 2025. "An Adaptive Conceptualisation of Artificial Intelligence and the Law, Regulation and Ethics," Laws, MDPI, vol. 14(2), pages 1-28, March.
  • Handle: RePEc:gam:jlawss:v:14:y:2025:i:2:p:19-:d:1615370
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2075-471X/14/2/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2075-471X/14/2/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Collins, Christopher & Dennehy, Denis & Conboy, Kieran & Mikalef, Patrick, 2021. "Artificial intelligence in information systems research: A systematic literature review and research agenda," International Journal of Information Management, Elsevier, vol. 60(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyu Cao & Zihan Chen & Prerna Mishra & Hamed Amini & Zachary Feinstein, 2023. "Modeling Inverse Demand Function with Explainable Dual Neural Networks," Papers 2307.14322, arXiv.org, revised Oct 2023.
    2. Sood, Kirti & Singh, Simarjeet & Behl, Abhishek & Sindhwani, Rahul & Kaur, Sandeepa & Pereira, Vijay, 2023. "Identification and prioritization of the risks in the mass adoption of artificial intelligence-driven stable coins: The quest for optimal resource utilization," Resources Policy, Elsevier, vol. 81(C).
    3. Siddharth Madhav Joshi & Anubha Shekhar Sinha, 2023. "Knowledge as practice - How Artificial Intelligence can create new knowledge?," Working papers 550, Indian Institute of Management Kozhikode.
    4. Emmanouil Papagiannidis & Ida Merete Enholm & Chirstian Dremel & Patrick Mikalef & John Krogstie, 2023. "Toward AI Governance: Identifying Best Practices and Potential Barriers and Outcomes," Information Systems Frontiers, Springer, vol. 25(1), pages 123-141, February.
    5. Shivam Gupta & Sachin Modgil & Choong-Ki Lee & Uthayasankar Sivarajah, 2023. "The future is yesterday: Use of AI-driven facial recognition to enhance value in the travel and tourism industry," Information Systems Frontiers, Springer, vol. 25(3), pages 1179-1195, June.
    6. Issa Helmi & Lakkis Hussein & Dakroub Roy & Jaber Jad, 2023. "Examining User Engagement and Experience in Agritech," International Journal of Contemporary Management, Sciendo, vol. 59(2), pages 17-32, June.
    7. Efpraxia D. Zamani & Conn Smyth & Samrat Gupta & Denis Dennehy, 2023. "Artificial intelligence and big data analytics for supply chain resilience: a systematic literature review," Annals of Operations Research, Springer, vol. 327(2), pages 605-632, August.
    8. Tomas Pečiulis & Nisar Ahmad & Angeliki N. Menegaki & Aqsa Bibi, 2024. "Forecasting of cryptocurrencies: Mapping trends, influential sources, and research themes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1880-1901, September.
    9. Cubric, Marija & Li, Feng, 2024. "Bridging the ‘Concept–Product’ gap in new product development: Emerging insights from the application of artificial intelligence in FinTech SMEs," Technovation, Elsevier, vol. 134(C).
    10. Fred Niederman & Elizabeth White Baker, 2023. "Ethics and AI Issues: Old Container with New Wine?," Information Systems Frontiers, Springer, vol. 25(1), pages 9-28, February.
    11. René Riedl, 2022. "Is trust in artificial intelligence systems related to user personality? Review of empirical evidence and future research directions," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2021-2051, December.
    12. Antoine Harfouche & Bernard Quinio & Mario Saba & Peter Bou Saba, 2023. "The Recursive Theory of Knowledge Augmentation: Integrating human intuition and knowledge in Artificial Intelligence to augment organizational knowledge," Information Systems Frontiers, Springer, vol. 25(1), pages 55-70, February.
    13. Ritala, Paavo & Aaltonen, Päivi & Ruokonen, Mika & Nemeh, Andre, 2024. "Developing industrial AI capabilities: An organisational learning perspective," Technovation, Elsevier, vol. 138(C).
    14. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    15. Mahmud, Hasan & Islam, A.K.M. Najmul & Ahmed, Syed Ishtiaque & Smolander, Kari, 2022. "What influences algorithmic decision-making? A systematic literature review on algorithm aversion," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    16. Vasiliki Koniakou, 2023. "From the “rush to ethics” to the “race for governance” in Artificial Intelligence," Information Systems Frontiers, Springer, vol. 25(1), pages 71-102, February.
    17. Elena COSTIN & Elena Daniela DUMITRASCU & Andreea Georgiana ENE & Florinela Georgiana PREDA, 2023. "The Impact of Artificial Intelligence and the ChatGPT Tool on Society," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 14(1), pages 61-75.
    18. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    19. Umut Turksen & Vladlena Benson & Bogdan Adamyk, 2024. "Legal implications of automated suspicious transaction monitoring: enhancing integrity of AI," Journal of Banking Regulation, Palgrave Macmillan, vol. 25(4), pages 359-377, December.
    20. Armenia, Stefano & Franco, Eduardo & Iandolo, Francesca & Maielli, Giuliano & Vito, Pietro, 2024. "Zooming in and out the landscape: Artificial intelligence and system dynamics in business and management," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlawss:v:14:y:2025:i:2:p:19-:d:1615370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.