IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i5p142-d355023.html
   My bibliography  Save this article

Land Use Impacts on Particulate Matter Levels in Seoul, South Korea: Comparing High and Low Seasons

Author

Listed:
  • Hyungkyoo Kim

    (Department of Urban Design and Planning, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Korea)

Abstract

Seoul, a city in South Korea, experiences high particulate matter (PM) levels well above the recommended standards suggested by the World Health Organization. As concerns about public health and everyday lives are being raised, this study investigates the effects of land use on PM levels in Seoul. Specifically, it attempts to identify which land use types increase or decrease PM 10 and PM 2.5 levels and compare the effects between high and low seasons using two sets of land use classifications: one coarser and the other finer. A series of partial least regression models identifies that industrial land use increases the PM levels in all cases. It is also reported that residential and commercial land uses associated with lower density increase these levels. Other uses, such as green spaces and road, show mixed or unclear effects. The findings of this study may inform planners and policymakers about how they can refine future land use planning and development practice in cities that face similar challenges.

Suggested Citation

  • Hyungkyoo Kim, 2020. "Land Use Impacts on Particulate Matter Levels in Seoul, South Korea: Comparing High and Low Seasons," Land, MDPI, vol. 9(5), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:142-:d:355023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/5/142/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/5/142/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Hesam Hafezi & Naznin Sultana Daisy & Lei Liu & Hugh Millward, 2019. "Modelling transport-related pollution emissions for the synthetic baseline population of a large Canadian university," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 23(4), pages 519-533, October.
    2. Hyungkyoo Kim & Seung-Nam Kim, 2017. "The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    3. Jaeseok Her & Sungjin Park & Jae Seung Lee, 2016. "The Effects of Bus Ridership on Airborne Particulate Matter (PM10) Concentrations," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    4. Hsiao-Lan Liu & Yu-Sheng Shen, 2014. "The Impact of Green Space Changes on Air Pollution and Microclimates: A Case Study of the Taipei Metropolitan Area," Sustainability, MDPI, vol. 6(12), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heechul Kim & Sungjo Hong, 2021. "Differences in the Influence of Microclimate on Pedestrian Volume According to Land-Use," Land, MDPI, vol. 10(1), pages 1-18, January.
    2. Jeongin Eum & Hyungkyoo Kim, 2021. "Effects of Air Pollution on Assaults: Findings from South Korea," Sustainability, MDPI, vol. 13(20), pages 1-13, October.
    3. Walter Dachaga & Walter Timo de Vries, 2021. "Land Tenure Security and Health Nexus: A Conceptual Framework for Navigating the Connections between Land Tenure Security and Health," Land, MDPI, vol. 10(3), pages 1-21, March.
    4. Hyunjung Lee & Sookuk Park & Helmut Mayer, 2023. "Statistical Characteristics of Air Quality Index DAQx*-Specific Air Pollutants Differentiated by Types of Air Quality Monitoring Stations: A Case Study of Seoul, Republic of Korea," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    5. Eunseo Shin & Yeeun Shin & Suyeon Kim & Sangwoo Lee & Kyungjin An, 2023. "Identifying Particulate Matter Variances Based on Environmental Contexts: Installing and Surveying Real-Time Measuring Sensors," Land, MDPI, vol. 12(4), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beno Mesarec & Branka Trček, 2024. "Suggestions and Solutions for Enhancing Active Commuting to the University of Maribor and Advancing CO 2 Emission Reduction," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    2. Cuixia Yan & Lucang Wang & Qing Zhang, 2021. "Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    3. Ruixue Liu & Jing Xiao, 2020. "Factors Affecting Users’ Satisfaction with Urban Parks through Online Comments Data: Evidence from Shenzhen, China," IJERPH, MDPI, vol. 18(1), pages 1-22, December.
    4. Hadi Soltanifard & Elham Jafari, 2019. "A conceptual framework to assess ecological quality of urban green space: a case study in Mashhad city, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1781-1808, August.
    5. Weiwei Liu & Jin Zhang & Liang Jin & Jieshuang Dong & Osama Alfarraj & Amr Tolba & Qian Wang & Yihao He, 2023. "Sustainable Low-Carbon Layout of Land around Rail Transit Stations Based on Multi-Modal Spatial Data," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    6. Junga Lee & Christopher D. Ellis & Yun Eui Choi & Soojin You & Jinhyung Chon, 2015. "An Integrated Approach to Mitigation Wetland Site Selection: A Case Study in Gwacheon, Korea," Sustainability, MDPI, vol. 7(3), pages 1-28, March.
    7. Zhensheng Wang & Ke Nie, 2017. "Measuring Spatial Distribution Characteristics of Heavy Metal Contaminations in a Network-Constrained Environment: A Case Study in River Network of Daye, China," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    8. Demsachew Guadie & Tsegaye Getahun & Kalkidan Asnake & Sebsebe Demissew, 2022. "Multifunctional Urban Green Infrastructure Development in a Sub-Saharan Country: The Case of Friendship Square Park, Addis Ababa, Ethiopia," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    9. Milena Vuckovic & Kristina Kiesel & Ardeshir Mahdavi, 2017. "The Extent and Implications of the Microclimatic Conditions in the Urban Environment: A Vienna Case Study," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    10. Qingyong Wang & Hong-Ning Dai & Hao Wang, 2017. "A Smart MCDM Framework to Evaluate the Impact of Air Pollution on City Sustainability: A Case Study from China," Sustainability, MDPI, vol. 9(6), pages 1-17, May.
    11. Hongyu Du & Fengqi Zhou & Wenbo Cai & Yongli Cai & Yanqing Xu, 2021. "Thermal and Humidity Effect of Urban Green Spaces with Different Shapes: A Case Study of Shanghai, China," IJERPH, MDPI, vol. 18(11), pages 1-13, June.
    12. Miroslav Stefanov, 2018. "Features of Compressed Natural Gas Physical Distribution: A Bulgarian Case Study," Logistics, MDPI, vol. 2(3), pages 1-21, September.
    13. Joanna Wysmułek & Maria Hełdak & Anatolii Kucher, 2020. "The Analysis of Green Areas’ Accessibility in Comparison with Statistical Data in Poland," IJERPH, MDPI, vol. 17(12), pages 1-17, June.
    14. Chia-An Ku, 2020. "Exploring the Spatial and Temporal Relationship between Air Quality and Urban Land-Use Patterns Based on an Integrated Method," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    15. Kim, Hyungkyoo & Jung, Yoonhee & Oh, Jae In, 2019. "Transformation of urban heat island in the three-center city of Seoul, South Korea: The role of master plans," Land Use Policy, Elsevier, vol. 86(C), pages 328-338.
    16. Lisa Orii & Luis Alonso & Kent Larson, 2020. "Methodology for Establishing Well-Being Urban Indicators at the District Level to be Used on the CityScope Platform," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    17. Hyungkyoo Kim & Seung-Nam Kim, 2017. "The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    18. Hansen Li & Matthew H. E. M. Browning & Angel M. Dzhambov & Guodong Zhang & Yang Cao, 2022. "Green Space for Mental Health in the COVID-19 Era: A Pathway Analysis in Residential Green Space Users," Land, MDPI, vol. 11(8), pages 1-18, July.
    19. Jaehyun Ha & Yeri Choi & Sugie Lee & Kyushik Oh, 2020. "Diurnal and Seasonal Variations in the Effect of Urban Environmental Factors on Air Temperature: A Consecutive Regression Analysis Approach," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    20. Hamad, Khaled & Obaid, Lubna, 2022. "Tour-based travel demand forecasting model for a university campus," Transport Policy, Elsevier, vol. 117(C), pages 118-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:142-:d:355023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.