IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i11p433-d440614.html
   My bibliography  Save this article

Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data

Author

Listed:
  • Alexandra Gemitzi

    (Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece)

Abstract

There is a growing interest for scientists and society to acquire deep knowledge on the impacts from environmental disasters. The present work deals with the investigation of vegetation dynamics in the Chernobyl area, a place widely known for the devastating nuclear disaster on the 26th of April 1986. To unveil any possible long-term radiation effects on vegetation phenology, the remotely sensed normalized difference vegetation index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) was analyzed within the 30 km Exclusion Zone, where all human activities were ceased at that time and public access and inhabitation have been prohibited ever since. The analysis comprised applications of seasonal trend analysis using two techniques, i.e., pixel-wise NDVI time series and spatially averaged NDVI time series. Both techniques were applied in each one of the individual land cover types. To assess the existence of abnormal vegetation dynamics, the same analyses were conducted in two broader zones, i.e., from 30 to 60 km and from 60 to 90 km, away from Chernobyl area, where human activities were not substantially altered. Results of both analyses indicated that vegetation dynamics in the 30 km Exclusion Zone correspond to increasing plant productivity at a rate considerably higher than that of the other two examined zones. The outcome of the analyses presented herein attributes greening trends in the 30 km and the 30 to 60 km zones to a combination of climate, minimized human impact and a consequent prevalence of land cover types which seem to be well adapted to increased radioactivity. The vegetation greening trends observed in the third zone, i.e., the 90 km zone, are indicative of the combination of climate and increasing human activities. Results indicate the positive impact from the absence of human activities on vegetation dynamics as far as vegetation productivity and phenology are concerned in the 30 km Exclusion Zone, and to a lower extent in the 60 km zone. Furthermore, there is evidence that land cover changes evolve into the prevalence of woody vegetation in an area with increased levels of radioactivity.

Suggested Citation

  • Alexandra Gemitzi, 2020. "Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data," Land, MDPI, vol. 9(11), pages 1-19, November.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:433-:d:440614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/11/433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/11/433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. B. Myneni & C. D. Keeling & C. J. Tucker & G. Asrar & R. R. Nemani, 1997. "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature, Nature, vol. 386(6626), pages 698-702, April.
    2. Wenmin Zhang & Martin Brandt & Josep Penuelas & Françoise Guichard & Xiaoye Tong & Feng Tian & Rasmus Fensholt, 2019. "Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    2. Akhlaq Amin Wani & Amir Farooq Bhat & Aaasif Ali Gatoo & Shiba Zahoor & Basira Mehraj & Naveed Najam & Qaisar Shafi Wani & M A Islam & Shah Murtaza & Moonisa Aslam Dervash & P K Joshi, 2021. "Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-22, January.
    3. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    4. F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
    5. Jinting Guo & Yuanman Hu & Zaiping Xiong & Xiaolu Yan & Chunlin Li & Rencang Bu, 2017. "Variations in Growing-Season NDVI and Its Response to Permafrost Degradation in Northeast China," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    6. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    7. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Craig D. Idso, 2001. "Earth's Rising Atmospheric Co2 Concentration: Impacts on the Biosphere," Energy & Environment, , vol. 12(4), pages 287-310, July.
    10. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    11. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    12. Lausch, Angela & Salbach, Christoph & Schmidt, Andreas & Doktor, Daniel & Merbach, Ines & Pause, Marion, 2015. "Deriving phenology of barley with imaging hyperspectral remote sensing," Ecological Modelling, Elsevier, vol. 295(C), pages 123-135.
    13. Mette, Tobias & Albrecht, Axel & Ammer, Christian & Biber, Peter & Kohnle, Ulrich & Pretzsch, Hans, 2009. "Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany," Ecological Modelling, Elsevier, vol. 220(13), pages 1670-1680.
    14. Vanessa M. Comeau & Lori D. Daniels, 2022. "Multiple divergent patterns in yellow-cedar growth driven by anthropogenic climate change," Climatic Change, Springer, vol. 170(3), pages 1-20, February.
    15. Jan Verbesselt & Achim Zeileis & Martin Herold, 2011. "Near Real-Time Disturbance Detection in Terrestrial Ecosystems Using Satellite Image Time Series: Drought Detection in Somalia," Working Papers 2011-18, Faculty of Economics and Statistics, Universität Innsbruck.
    16. Zhao, Chunli & Yan, Yan & Ma, Wenyong & Shang, Xu & Chen, Jianguo & Rong, Yuejing & Xie, Tian & Quan, Yuan, 2021. "RESTREND-based assessment of factors affecting vegetation dynamics on the Mongolian Plateau," Ecological Modelling, Elsevier, vol. 440(C).
    17. Bolin, David & Lindström, Johan & Eklundh, Lars & Lindgren, Finn, 2009. "Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2885-2896, June.
    18. Shi, Yusheng & Sasai, Takahiro & Yamaguchi, Yasushi, 2014. "Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001–2010," Ecological Modelling, Elsevier, vol. 272(C), pages 98-115.
    19. Zongxing, Li & Qi, Feng & Zongjie, Li & Xufeng, Wang & Juan, Gui & Baijuan, Zhang & Yuchen, Li & Xiaohong, Deng & Jian, Xue & Wende, Gao & Anle, Yang & Fusen, Nan & Pengfei, Liang, 2021. "Reversing conflict between humans and the environment - The experience in the Qilian Mountains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Kathuroju, Naven & White, Michael A. & Symanzik, Jürgen & Schwartz, Mark D. & Powell, James A. & Nemani, Ramakrishna R., 2007. "On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models," Ecological Modelling, Elsevier, vol. 201(2), pages 144-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:433-:d:440614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.