IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v8y2019i7p111-d248845.html
   My bibliography  Save this article

Operationalizing Vulnerability: Land System Dynamics in a Transfrontier Conservation Area

Author

Listed:
  • Andrea Elizabeth Gaughan

    (Department of Geography and Geosciences, University of Louisville, 213 Lutz Hall, Louisville, KY 40292, USA)

  • Forrest Robert Stevens

    (Department of Geography and Geosciences, University of Louisville, 213 Lutz Hall, Louisville, KY 40292, USA)

  • Narcisa Gabriela Pricope

    (Department of Earth and Ocean Sciences, University of North Carolina Wilmington, 601 S College Rd., Wilmington, NC 28403, USA)

  • Joel Hartter

    (Environmental Studies Program, University of Colorado Boulder, 4001 Discovery Dr., Boulder, CO 80303, USA)

  • Lin Cassidy

    (Independent Research Consultant, P.O. Box 233, Maun, Ngamiland District 00000, Botswana)

  • Jonathan Salerno

    (Department of Human Dimensions of Natural Resources, Colorado State University, 1480 Campus Delivery, Fort Collins, CO 80523-1480, USA)

Abstract

Understanding how individuals, communities, and populations vary in their vulnerability requires defining and identifying vulnerability with respect to a condition, and then developing robust methods to reliably measure vulnerability. In this study, we illustrate how a conceptual model translated via simulation can guide the real-world implementation of data collection and measurement of a model system. We present a generalizable statistical framework that specifies linkages among interacting social and biophysical components in complex landscapes to examine vulnerability. We use the simulated data to present a case study in which households are vulnerable to conditions of land function, which we define as the provision of goods and services from the surrounding environment. We use an example of a transboundary region of Southern Africa and apply a set of hypothesized, simulated data to illustrate how one might use the framework to assess vulnerability based on empirical data. We define vulnerability as the predisposition of being adversely affected by environmental variation and its impacts on land uses and their outcomes as exposure (E), mediated by sensitivity (S), and mitigated by adaptive capacity (AC). We argue that these are latent, or hidden, characteristics that can be measured through a set of observable indicators. Those indicators and the linkages between latent variables require model specification prior to data collection, critical for applying the type of modeling framework presented. We discuss the strength and directional pathways between land function and vulnerability components, and assess their implications for identifying potential leverage points within the system for the benefit of future policy and management decisions.

Suggested Citation

  • Andrea Elizabeth Gaughan & Forrest Robert Stevens & Narcisa Gabriela Pricope & Joel Hartter & Lin Cassidy & Jonathan Salerno, 2019. "Operationalizing Vulnerability: Land System Dynamics in a Transfrontier Conservation Area," Land, MDPI, vol. 8(7), pages 1-19, July.
  • Handle: RePEc:gam:jlands:v:8:y:2019:i:7:p:111-:d:248845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/8/7/111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/8/7/111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    2. Narcisa G. Pricope & Andrea E. Gaughan & John D. All & Michael W. Binford & Lucas P. Rutina, 2015. "Spatio-Temporal Analysis of Vegetation Dynamics in Relation to Shifting Inundation and Fire Regimes: Disentangling Environmental Variability from Land Management Decisions in a Southern African Transb," Land, MDPI, vol. 4(3), pages 1-29, July.
    3. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    4. Harvey Goldstein & Roderick McDonald, 1988. "A general model for the analysis of multilevel data," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 455-467, December.
    5. Christiaan Grootaert & Ravi Kanbur & Gi-Taik Oh, 1997. "The dynamics of welfare gains and losses: An African case study," Journal of Development Studies, Taylor & Francis Journals, vol. 33(5), pages 635-657.
    6. Robin Leichenko & Karen O'Brien, 2002. "The Dynamics of Rural Vulnerability to Global Change: The Case of southern Africa," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 1-18, March.
    7. Deborah Roberts, 2005. "The role of households in sustaining rural economies: a structural path analysis," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 32(3), pages 393-420, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Heon Shim & Chun-Il Kim, 2015. "Measuring Resilience to Natural Hazards: Towards Sustainable Hazard Mitigation," Sustainability, MDPI, vol. 7(10), pages 1-33, October.
    2. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    3. Terese E. Venus & Stephanie Bilgram & Johannes Sauer & Arun Khatri-Chettri, 2022. "Livelihood vulnerability and climate change: a comparative analysis of smallholders in the Indo-Gangetic plains," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1981-2009, February.
    4. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
    5. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    6. Leslie Gillespie‐Marthaler & Katherine Nelson & Hiba Baroud & Mark Abkowitz, 2019. "Selecting Indicators for Assessing Community Sustainable Resilience," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2479-2498, November.
    7. Glwadys A. Gbetibouo & Claudia Ringler & Rashid Hassan, 2010. "Vulnerability of the South African farming sector to climate change and variability: An indicator approach," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 175-187, August.
    8. Felix Riede, 2014. "Towards a science of past disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 335-362, March.
    9. Caroline Michellier & Patrick Pigeon & Francois Kervyn & Eleonore Wolff, 2016. "Contextualizing vulnerability assessment: a support to geo-risk management in central Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 27-42, May.
    10. Muhammad Irshad Ahmad & Hengyun Ma, 2020. "Climate Change and Livelihood Vulnerability in Mixed Crop–Livestock Areas: The Case of Province Punjab, Pakistan," Sustainability, MDPI, vol. 12(2), pages 1-31, January.
    11. Eleonora Giovene di Girasole & Daniele Cannatella, 2017. "Social Vulnerability to Natural Hazards in Urban Systems. An Application in Santo Domingo (Dominican Republic)," Sustainability, MDPI, vol. 9(11), pages 1-17, November.
    12. Sébastien Dujardin & Damien Jacques & Jessica Steele & Catherine Linard, 2020. "Mobile Phone Data for Urban Climate Change Adaptation: Reviewing Applications, Opportunities and Key Challenges," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    13. Sarah Percival & Richard Teeuw, 2019. "A methodology for urban micro-scale coastal flood vulnerability and risk assessment and mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 355-377, May.
    14. Yi Ge & Wen Dou & Jianping Dai, 2017. "A New Approach to Identify Social Vulnerability to Climate Change in the Yangtze River Delta," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    15. Mario A. Salgado-Gálvez & Daniela Zuloaga Romero & César A. Velásquez & Martha L. Carreño & Omar-Darío Cardona & Alex H. Barbat, 2016. "Urban seismic risk index for Medellín, Colombia, based on probabilistic loss and casualties estimations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1995-2021, February.
    16. Sahoo, Dibakar & Sridevi, G, 2021. "Social vulnerability and adaptation to climate change: evidence from vulnerable farmers’ groups in Odisha, India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 34(Conferenc), October.
    17. Uttama Barua & Shahrin Mannan & Ishrat Islam & Mohammad Shakil Akther & Md. Aminul Islam & Tamanna Akter & Raquib Ahsan & Mehedy Ahmed Ansary, 2020. "People’s awareness, knowledge and perception influencing earthquake vulnerability of a community: A study on Ward no. 14, Mymensingh Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1121-1181, August.
    18. Gbetibouo, Glwadys Aymone & Ringler, Claudia, 2009. "Mapping South African farming sector vulnerability to climate change and variability: A subnational assessment," IFPRI discussion papers 885, International Food Policy Research Institute (IFPRI).
    19. Xuchao Yang & Lin Lin & Yizhe Zhang & Tingting Ye & Qian Chen & Cheng Jin & Guanqiong Ye, 2019. "Spatially Explicit Assessment of Social Vulnerability in Coastal China," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    20. Yi Chen & Tao Liu & Ruishan Chen & Mengke Zhao, 2020. "Influence of the Built Environment on Community Flood Resilience: Evidence from Nanjing City, China," Sustainability, MDPI, vol. 12(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:8:y:2019:i:7:p:111-:d:248845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.