IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v4y2015i1p197-215d46595.html
   My bibliography  Save this article

Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana

Author

Listed:
  • Niti B. Mishra

    (Department of Geography & the Environment, University of Texas, Austin, 305 E 23rd St, CLA 3.306, Austin, TX 78712, USA)

  • Kelley A. Crews

    (Department of Geography & the Environment, University of Texas, Austin, 305 E 23rd St, CLA 3.306, Austin, TX 78712, USA)

  • Jennifer A. Miller

    (Department of Geography & the Environment, University of Texas, Austin, 305 E 23rd St, CLA 3.306, Austin, TX 78712, USA)

  • Thoralf Meyer

    (Department of Geography & the Environment, University of Texas, Austin, 305 E 23rd St, CLA 3.306, Austin, TX 78712, USA)

Abstract

Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari.

Suggested Citation

  • Niti B. Mishra & Kelley A. Crews & Jennifer A. Miller & Thoralf Meyer, 2015. "Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana," Land, MDPI, vol. 4(1), pages 1-19, March.
  • Handle: RePEc:gam:jlands:v:4:y:2015:i:1:p:197-215:d:46595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/4/1/197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/4/1/197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David S. G. Thomas & Melanie Knight & Giles F. S. Wiggs, 2005. "Remobilization of southern African desert dune systems by twenty-first century global warming," Nature, Nature, vol. 435(7046), pages 1218-1221, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amelia Carolina Sparavigna, 2013. "A Case Study of Moving Sand Dunes: The Barchans of the Kharga Oasis," International Journal of Sciences, Office ijSciences, vol. 2(08), pages 95-97, August.
    2. Jerome R. Mayaud & Nicholas P. Webb, 2017. "Vegetation in Drylands: Effects on Wind Flow and Aeolian Sediment Transport," Land, MDPI, vol. 6(3), pages 1-24, September.
    3. Amelia Carolina Sparavigna, 2016. "Analysis of the Motion of Some Brazilian Coastal Dunes," International Journal of Sciences, Office ijSciences, vol. 5(01), pages 22-31, January.
    4. Reed, M.S. & Podesta, G. & Fazey, I. & Geeson, N. & Hessel, R. & Hubacek, K. & Letson, D. & Nainggolan, D. & Prell, C. & Rickenbach, M.G. & Ritsema, C. & Schwilch, G. & Stringer, L.C. & Thomas, A.D., 2013. "Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options," Ecological Economics, Elsevier, vol. 94(C), pages 66-77.
    5. Andrew Gunn & Amy East & Douglas J. Jerolmack, 2022. "21st-century stagnation in unvegetated sand-sea activity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Knox, J.W. & Rodríguez Díaz, J.A. & Nixon, D.J. & Mkhwanazi, M., 2010. "A preliminary assessment of climate change impacts on sugarcane in Swaziland," Agricultural Systems, Elsevier, vol. 103(2), pages 63-72, February.
    7. Yanli Lyu & Peijun Shi & Guoyi Han & Lianyou Liu & Lanlan Guo & Xia Hu & Guoming Zhang, 2020. "Desertification Control Practices in China," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    8. Y. Ashkenazy & H. Yizhaq & Haim Tsoar, 2012. "Sand dune mobility under climate change in the Kalahari and Australian deserts," Climatic Change, Springer, vol. 112(3), pages 901-923, June.
    9. Mohammad Reza Rahdari & Andrés Rodríguez-Seijo, 2021. "Monitoring Sand Drift Potential and Sand Dune Mobility over the Last Three Decades (Khartouran Erg, Sabzevar, NE Iran)," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    10. Chen, Zheng & Liu, Jieyu & Li, Li & Wu, Yongping & Feng, Guolin & Qian, Zhonghua & Sun, Gui-Quan, 2022. "Effects of climate change on vegetation patterns in Hulun Buir Grassland," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Amelia Carolina Sparavigna, 2013. "The GNU Image Manipulation Program Applied to Study the Sand Dunes," International Journal of Sciences, Office ijSciences, vol. 2(09), pages 1-8, September.
    12. Amelia Carolina Sparavigna, 2013. "A Study of Moving Sand Dunes by Means of Satellite Images," International Journal of Sciences, Office ijSciences, vol. 2(08), pages 33-42, August.
    13. C. Williams & D. Kniveton, 2012. "Atmosphere-land surface interactions and their influence on extreme rainfall and potential abrupt climate change over southern Africa," Climatic Change, Springer, vol. 112(3), pages 981-996, June.
    14. Andreas Eleftheriou & Petros Mouzourides & George Biskos & Panayiotis Yiallouros & Prashant Kumar & Marina K.-A. Neophytou, 2023. "The challenge of adopting mitigation and adaptation measures for the impacts of sand and dust storms in Eastern Mediterranean Region: a critical review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-36, August.
    15. Kefi, Sonia & Rietkerk, Max & Katul, Gabriel G., 2008. "Vegetation pattern shift as a result of rising atmospheric CO2 in arid ecosystems," Theoretical Population Biology, Elsevier, vol. 74(4), pages 332-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:4:y:2015:i:1:p:197-215:d:46595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.