IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p219-d1572946.html
   My bibliography  Save this article

An Evaluation of the Capability of Global Meteorological Datasets to Capture Drought Events in Xinjiang

Author

Listed:
  • Yang Xu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 101408, China)

  • Zijiang Yang

    (Independent Researcher, Leeds LS2 9JT, UK)

  • Liang Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Juncheng Zhang

    (Meteorological Bureau of Dashiqiao, Yingkou 115100, China)

Abstract

With the accelerating pace of global warming, the imperative of selecting robust, long-term drought monitoring tools is becoming increasingly pronounced. In this study, we computed the Standardized Precipitation Evapotranspiration Index (SPEI) at both 3-month and 12-month temporal scales, utilizing observational data from 102 stations across Xinjiang and gridded observations spanning China. Our objective encompassed an assessment of the efficacy of three widely employed global meteorological estimation datasets (GMEs) in the context of drought monitoring across Xinjiang over the period of 1960–2020. Moreover, we conducted an in-depth examination into the origins of discrepancies observed within these GMEs. The findings of our analysis revealed a notable discrepancy in performance among the three GMEs, with CRU and ERA5 exhibiting significantly superior performance compared to NCEP-NCAR. Specifically, CRU (CC = 0.78, RMSE = 0.39 in northern Xinjiang) performed excellently in capturing regional wet–dry fluctuations and effectively monitoring the occurrence of droughts in northern Xinjiang. ERA5 (CC = 0.46, RMSE = 0.67 in southern Xinjiang) demonstrates a stronger capability to reflect the drought dynamics in the southern Xinjiang. Furthermore, the adequacy of these datasets in delineating the spatial distribution and severity of major drought events varied across different years of drought occurrence. While CRU and ERA5 displayed relatively accurate simulations of significant drought events in northern Xinjiang, all three GMEs exhibited substantial uncertainty when characterizing drought occurrences in southern Xinjiang. All three GMEs exhibited significant overestimation of the SPEI before 1990, and notable underestimation of this value thereafter, in Xinjiang. Discrepancies in potential evapotranspiration (PET) predominantly drove the disparities observed in CRU and ERA5, whereas both precipitation and PET influenced the discrepancies in NCEP-NCAR. The primary cause of PET differences stemmed from the reanalysis data’s inability to accurately simulate surface wind speed trends. Moreover, while reanalysis data effectively captured temperature, precipitation, and PET trends, numerical errors remained non-negligible. These findings offer crucial insights for dataset selection in drought research and drought risk management and provide foundational support for the refinement and enhancement of global meteorological estimation datasets.

Suggested Citation

  • Yang Xu & Zijiang Yang & Liang Zhang & Juncheng Zhang, 2025. "An Evaluation of the Capability of Global Meteorological Datasets to Capture Drought Events in Xinjiang," Land, MDPI, vol. 14(2), pages 1-28, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:219-:d:1572946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher R. Schwalm & William R. L. Anderegg & Anna M. Michalak & Joshua B. Fisher & Franco Biondi & George Koch & Marcy Litvak & Kiona Ogle & John D. Shaw & Adam Wolf & Deborah N. Huntzinger & Kev, 2017. "Global patterns of drought recovery," Nature, Nature, vol. 548(7666), pages 202-205, August.
    2. Piyush Dahal & Nicky Shree Shrestha & Madan Lall Shrestha & Nir Y. Krakauer & Jeeban Panthi & Soni M. Pradhanang & Ajay Jha & Tarendra Lakhankar, 2016. "Drought risk assessment in central Nepal: temporal and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1913-1932, February.
    3. Piyush Dahal & Nicky Shrestha & Madan Shrestha & Nir Krakauer & Jeeban Panthi & Soni Pradhanang & Ajay Jha & Tarendra Lakhankar, 2016. "Drought risk assessment in central Nepal: temporal and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1913-1932, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabhat Khanal & Rajan Dhakal & Tanka Khanal & Deepak Pandey & Naba Raj Devkota & Mette Olaf Nielsen, 2022. "Sustainable Livestock Production in Nepal: A Focus on Animal Nutrition Strategies," Agriculture, MDPI, vol. 12(5), pages 1-20, May.
    2. Saroj Koirala & Yiping Fang & Nirmal Mani Dahal & Chenjia Zhang & Bikram Pandey & Sabita Shrestha, 2020. "Application of Water Poverty Index (WPI) in Spatial Analysis of Water Stress in Koshi River Basin, Nepal," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    3. Alex Dunne & Yuriy Kuleshov, 2023. "Drought risk assessment and mapping for the Murray–Darling Basin, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 839-863, January.
    4. Pawan K. Chaubey & Prashant K. Srivastava & Akhilesh Gupta & R. K. Mall, 2021. "Integrated assessment of extreme events and hydrological responses of Indo-Nepal Gandak River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8643-8668, June.
    5. Wen Song & Shisong Cao & Mingyi Du & You Mo & Suju Li, 2022. "Investigation of compound drought risk and driving factors in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1365-1391, November.
    6. Neda Khanmohammadi & Hossein Rezaie & Majid Montaseri & Javad Behmanesh, 2017. "The Effect of Temperature Adjustment on Reference Evapotranspiration and Reconnaissance Drought Index (RDI) in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5001-5017, December.
    7. Sweta Pandey & Swastika Shrestha & Ruchita Bhattarai & Anu Sharma, 2021. "Role of Conservation Agriculture in Sustainability of Rice-Wheat Cropping System In Nepal," Reviews in Food and Agriculture (RFNA), Zibeline International Publishing, vol. 2(2), pages 76-82, June.
    8. Sisi Li & Huawei Pi, 2022. "Deconstruction of Dryness and Wetness Patterns with Drought Condition Assessment over the Mun River Basin, Thailand," Land, MDPI, vol. 11(12), pages 1-16, December.
    9. Francesco Cantini & Giulio Castelli & Cristiano Foderi & Adalid Salazar Garcia & Teresa López de Armentia & Elena Bresci & Fabio Salbitano, 2019. "Evidence-Based Integrated Analysis of Environmental Hazards in Southern Bolivia," IJERPH, MDPI, vol. 16(12), pages 1-21, June.
    10. Yanqun Ren & Jinping Liu & Patrick Willems & Tie Liu & Quoc Bao Pham, 2023. "Detection and Assessment of Changing Drought Events in China in the Context of Climate Change Based on the Intensity–Area–Duration Algorithm," Land, MDPI, vol. 12(10), pages 1-18, September.
    11. Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    12. Zhiming Zhang & Fengman Fang & Youru Yao & Qing Ji & Xiaojing Cheng, 2024. "Exploring the Response of Ecosystem Services to Socioecological Factors in the Yangtze River Economic Belt, China," Land, MDPI, vol. 13(6), pages 1-18, May.
    13. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    15. Liu, Zihan & Cai, Lu & Dong, Qinge & Zhao, Xiaoli & Han, Jianqiao, 2022. "Effects of microplastics on water infiltration in agricultural soil on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 271(C).
    16. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Seixas, Hugo Tameirão & Brunsell, Nathaniel A. & Moraes, Elisabete Caria & de Oliveira, Gabriel & Mataveli, Guilherme, 2022. "Exploring the ecosystem resilience concept with land surface model scenarios," Ecological Modelling, Elsevier, vol. 464(C).
    18. Mohammed Mohi-Ud-Din & Md. Alamgir Hossain & Md. Motiar Rohman & Md. Nesar Uddin & Md. Sabibul Haque & Eldessoky S. Dessoky & Mohammed Alqurashi & Salman Aloufi, 2022. "Assessment of Genetic Diversity of Bread Wheat Genotypes for Drought Tolerance Using Canopy Reflectance-Based Phenotyping and SSR Marker-Based Genotyping," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    19. Anne Gobin & Le Thi Thu Hien & Le Trinh Hai & Pham Ha Linh & Nguyen Ngoc Thang & Pham Quang Vinh, 2020. "Adaptation to Land Degradation in Southeast Vietnam," Land, MDPI, vol. 9(9), pages 1-25, August.
    20. Lei Zhang & Wei Song & Wen Song, 2020. "Assessment of Agricultural Drought Risk in the Lancang-Mekong Region, South East Asia," IJERPH, MDPI, vol. 17(17), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:219-:d:1572946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.