IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p171-d1567650.html
   My bibliography  Save this article

A Review: Potential of Earth Observation (EO) for Mapping Small-Scale Agriculture and Cropping Systems in West Africa

Author

Listed:
  • Niklas Heiss

    (German Remote Sensing Data Center, Earth Observation Center, EOC of the German Aerospace Center, DLR, 82234 Weßling, Germany)

  • Jonas Meier

    (German Remote Sensing Data Center, Earth Observation Center, EOC of the German Aerospace Center, DLR, 82234 Weßling, Germany)

  • Ursula Gessner

    (German Remote Sensing Data Center, Earth Observation Center, EOC of the German Aerospace Center, DLR, 82234 Weßling, Germany)

  • Claudia Kuenzer

    (German Remote Sensing Data Center, Earth Observation Center, EOC of the German Aerospace Center, DLR, 82234 Weßling, Germany
    Institute for Geography and Geology, University of Wuerzburg, 97074 Wuerzburg, Germany)

Abstract

West Africa faces a complex range of challenges arising from climatic, social, economic, and ecological factors, which pose significant risks. The rapidly growing population, coupled with persistently low agricultural yield, further exacerbates these risks. A state-of-the-art monitoring and data derivation of agricultural systems are crucial for improving livelihoods and enhancing food security. Despite smallholder farming systems accounting for 80% of cultivated cropland area and providing about 42% of the total employment in West Africa, there exists a lack of a comprehensive overview of Remote Sensing (RS) products and studies specifically tailored to smallholder farming systems, which this review aims to address. Through a systematic literature review comprising 163 SCI papers sourced from the Web of Science database (Filter I), followed by a full-text review (Filter II), we analyze the RS sensors, spatiotemporal distribution, temporal scales, the crop types examined, and thematic foci employed in existing research. Our findings highlight the predominance of high to very high-resolution, multispectral sensors as the primary data source and we observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. By highlighting existing knowledge, this study identifies the potential of RS and pinpoints the key research gaps. This sets the stage for future investigations aimed at addressing critical challenges in West African smallholder agricultural systems.

Suggested Citation

  • Niklas Heiss & Jonas Meier & Ursula Gessner & Claudia Kuenzer, 2025. "A Review: Potential of Earth Observation (EO) for Mapping Small-Scale Agriculture and Cropping Systems in West Africa," Land, MDPI, vol. 14(1), pages 1-47, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:171-:d:1567650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sawadogo, Alidou & Dossou-Yovo, Elliott R. & Kouadio, Louis & Zwart, Sander J. & Traoré, Farid & Gündoğdu, Kemal S., 2023. "Assessing the biophysical factors affecting irrigation performance in rice cultivation using remote sensing derived information," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    3. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    4. Leroux, L. & Falconnier, G.N. & Diouf, A.A. & Ndao, B. & Gbodjo, J.E. & Tall, L. & Balde, A.A. & Clermont-Dauphin, C. & Bégué, A. & Affholder, F. & Roupsard, O., 2020. "Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal," Agricultural Systems, Elsevier, vol. 184(C).
    5. Olufemi Sunday Durowoju & Temi Emmanuel Ologunorisa & Ademola Akinbobola, 2022. "Assessing agricultural and hydrological drought vulnerability in a savanna ecological zone of Sub-Saharan Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2431-2458, April.
    6. Ken E. Giller & Thomas Delaune & João Vasco Silva & Mark Wijk & James Hammond & Katrien Descheemaeker & Gerrie Ven & Antonius G. T. Schut & Godfrey Taulya & Regis Chikowo & Jens A. Andersson, 2021. "Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1431-1454, December.
    7. Nguru, Wilson & Abera, Wuletawu & Ouedraogo, Issa & Chege, Christine & Kane, Babacar & Bougouma, Katiana & Mwongera, Caroline, 2023. "Spatial estimation of flood residual water cultivation (FRWC) potential for food security in Sédhiou and Tambacounda regions of Sénégal," Agricultural Water Management, Elsevier, vol. 287(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nkhubedu Magakwe & Oluwasogo Olorunfemi, 2024. "A Systematic Review of the Trends, Effects, and Deterrents of Collective Marketing Participation Among Smallholder Farmers in Sub-Saharan Africa," Sustainability, MDPI, vol. 16(21), pages 1-13, November.
    2. Ken E. Giller & Thomas Delaune & João Vasco Silva & Mark Wijk & James Hammond & Katrien Descheemaeker & Gerrie Ven & Antonius G. T. Schut & Godfrey Taulya & Regis Chikowo & Jens A. Andersson, 2021. "Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1431-1454, December.
    3. Patil, Vikram & Ghosh, Ranjan & Kathuria, Vinish & Farrell, Katharine N., 2020. "Money, Land or self-employment? Understanding preference heterogeneity in landowners’ choices for compensation under land acquisition in India," Land Use Policy, Elsevier, vol. 97(C).
    4. Luis Bauluz & Yajna Govind & Filip Novokmet, 2020. "Global Land Inequality," PSE Working Papers halshs-03022318, HAL.
    5. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    6. Islam, Md. Mofakkarul & Sarker, Md. Asaduzzaman & Al Mamun, Md. Abdullah & Mamun-ur-Rashid, Md. & Roy, Debashis, 2021. "Stepping Up versus Stepping Out: On the outcomes and drivers of two alternative climate change adaptation strategies of smallholders," World Development, Elsevier, vol. 148(C).
    7. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    8. Anne Jerneck, 2018. "What about Gender in Climate Change? Twelve Feminist Lessons from Development," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    9. Rodríguez del Valle, Adrián & Fernández-Vázquez, Esteban, 2024. "Analyzing market power of the agricultural industry in Asia," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 652-669.
    10. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    11. Hurley, Mason, 2016. "Re-examining Changes in Farm Size Distributions Worldwide Using a Modified Generalized Method of Moments Approach," Master's Theses and Plan B Papers 249287, University of Minnesota, Department of Applied Economics.
    12. Yuta J. Masuda & Jonathan R.B. Fisher & Wei Zhang & Carolina Castilla & Timothy M. Boucher & Genowefa Blundo‐Canto, 2020. "A respondent‐driven method for mapping small agricultural plots using tablets and high resolution imagery," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(5), pages 727-748, July.
    13. Koolwal, Gayatri B., 2021. "Improving the measurement of rural women's employment: Global momentum and survey priorities," World Development, Elsevier, vol. 147(C).
    14. Manhisse, Nelson & Ogawa, Keiichi, 2024. "Smallholder households and children’s schooling in primary education in Mozambique," International Journal of Educational Development, Elsevier, vol. 105(C).
    15. Yuewen Huo & Songlin Ye & Zhou Wu & Fusuo Zhang & Guohua Mi, 2022. "Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    16. Dang, Hai-Anh H & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    17. Ilia Alomía Herrera & Rose Paque & Michiel Maertens & Veerle Vanacker, 2022. "History of Land Cover Change on Santa Cruz Island, Galapagos," Land, MDPI, vol. 11(7), pages 1-24, July.
    18. Do, Manh Hung & Nguyen, Trung Thanh, 2024. "Impact of crop commercialization on smallholder farmers’ resilience to shocks: Evidence from panel data for rural Southeast Asia," Food Policy, Elsevier, vol. 128(C).
    19. Zhiqi Zheng & Hongbo Zhao & Zhengdao Liu & Jin He & Wenzheng Liu, 2021. "Research Progress and Development of Mechanized Potato Planters: A Review," Agriculture, MDPI, vol. 11(6), pages 1-27, June.
    20. Hung‐Hao Chang & Ashok K. Mishra & Tzong‐Haw Lee, 2019. "A supply‐side analysis of agritourism: Evidence from farm‐level agriculture census data in Taiwan," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), pages 521-548, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:171-:d:1567650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.