IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2024i1p56-d1557497.html
   My bibliography  Save this article

Carbon Budget Assessment and Influencing Factors for Forest Enterprises in the Key State-Owned Forest Area of the Greater Khingan Range, Northeast China

Author

Listed:
  • Hui Wang

    (College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China)

  • Wenshu Lin

    (College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China)

  • Jinzhuo Wu

    (College of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China)

  • Zhaoping Luan

    (Key Forest Resources Monitoring Center in National Forest Areas, National Forestry and Grassland Administration, Jiagedaqi 165000, China)

Abstract

Analyzing the spatial and temporal changes in the carbon budget and its influencing factors is the basis for formulating effective measures to reduce emissions and increase sinks. This study establishes a carbon budget assessment model for forest enterprises, calculating forest carbon stocks and enterprise emissions using volume-derived biomass and emission factor methods. The spatiotemporal evolution characteristics of carbon budgets for forest enterprises in the key state-owned forest area (2017–2021) were analyzed using various methods, including the Mann-Kendall (MK) test and hotspot analysis. Influencing factors are identified through correlation analysis and the optimal parameter geographical detector (OPGD), while their spatial-temporal variations and causal relationships are analyzed using the geographical and temporal weighted regression model (GTWR) and structural equation modeling (SEM). The carbon budget in the Greater Khingan Range state-owned forest area averaged 10.16 × 10 6 t CO 2 -eq from 2017 to 2021, showing a gradual upward trend. The average annual carbon budget of forest enterprises was 1.02 × 10 6 t CO 2 -eq, which was highest in the central regions and lowest in the periphery. Soil pH, forest area, and elevation are the primary factors. The interaction between paired factors enhances the explanatory power of their impact, and the effects of different influencing factors exhibit both positive and negative variations across forest enterprises. In addition, the middle-aged forest tending area and average annual precipitation positively influenced forest area and soil pH, indirectly enhancing the carbon budget through multifactor interactions. This research can enhance the understanding of the carbon budget in forest enterprises, providing scientific support for the ecological protection of state-owned forests and contributing to the development of sustainable forestry practices that indirectly benefit societal well-being and economic resilience.

Suggested Citation

  • Hui Wang & Wenshu Lin & Jinzhuo Wu & Zhaoping Luan, 2024. "Carbon Budget Assessment and Influencing Factors for Forest Enterprises in the Key State-Owned Forest Area of the Greater Khingan Range, Northeast China," Land, MDPI, vol. 14(1), pages 1-26, December.
  • Handle: RePEc:gam:jlands:v:14:y:2024:i:1:p:56-:d:1557497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/56/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/56/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan C. Cook-Patton & Sara M. Leavitt & David Gibbs & Nancy L. Harris & Kristine Lister & Kristina J. Anderson-Teixeira & Russell D. Briggs & Robin L. Chazdon & Thomas W. Crowther & Peter W. Ellis & , 2020. "Mapping carbon accumulation potential from global natural forest regrowth," Nature, Nature, vol. 585(7826), pages 545-550, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2023. "Increasing Paper and Cardboard Recycling: Impacts on the Forest Sector and Carbon Emissions," Post-Print hal-04690101, HAL.
    2. Susan C. Cook-Patton & C. Ronnie Drever & Bronson W. Griscom & Kelley Hamrick & Hamilton Hardman & Timm Kroeger & Pablo Pacheco & Shyla Raghav & Martha Stevenson & Chris Webb & Samantha Yeo & Peter W., 2021. "Protect, manage and then restore lands for climate mitigation," Nature Climate Change, Nature, vol. 11(12), pages 1027-1034, December.
    3. Jing Zhao & Hui Hu & Jinglei Wang, 2022. "Forest Carbon Reserve Calculation and Comprehensive Economic Value Evaluation: A Forest Management Model Based on Both Biomass Expansion Factor Method and Total Forest Value," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    4. Debojyoti Chakraborty & Albert Ciceu & Dalibor Ballian & Marta Benito Garzón & Andreas Bolte & Gregor Bozic & Rafael Buchacher & Jaroslav Čepl & Eva Cremer & Alexis Ducousso & Julian Gaviria & Jan Pet, 2024. "Assisted tree migration can preserve the European forest carbon sink under climate change," Nature Climate Change, Nature, vol. 14(8), pages 845-852, August.
    5. Maxence Gérard & Stéphane De Cara & Guy Meunier, 2025. "Mitigating greenhouse gas emissions from the cattle sector: Land‐use regulation as an alternative to emissions pricing," American Journal of Agricultural Economics, John Wiley & Sons, vol. 107(1), pages 312-345, January.
    6. Jacob J. Bukoski & Susan C. Cook-Patton & Cyril Melikov & Hongyi Ban & Jessica L. Chen & Elizabeth D. Goldman & Nancy L. Harris & Matthew D. Potts, 2022. "Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Chu, Long & Grafton, R. Quentin & Nguyen, Hai, 2022. "A global analysis of the break-even prices to reduce atmospheric carbon dioxide via forest plantation and avoided deforestation," Forest Policy and Economics, Elsevier, vol. 135(C).
    8. Yangjian Zhang & Li Wang & Quan Zhou & Feng Tang & Bo Zhang & Ni Huang & Biswajit Nath, 2022. "Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring," Land, MDPI, vol. 11(4), pages 1-20, March.
    9. Robin R. Sears & Manuel R. Guariguata & Peter Cronkleton & Cristina Miranda Beas, 2021. "Strengthening Local Governance of Secondary Forest in Peru," Land, MDPI, vol. 10(12), pages 1-16, November.
    10. Desanka Lazic & Cornelia Geßner & Katharina J. Liepe & Isabelle Lesur-Kupin & Malte Mader & Céline Blanc-Jolivet & Dušan Gömöry & Mirko Liesebach & Santiago C. González-Martínez & Matthias Fladung & B, 2024. "Genomic variation of European beech reveals signals of local adaptation despite high levels of phenotypic plasticity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Qiming Zheng & Tim Ha & Alexander V. Prishchepov & Yiwen Zeng & He Yin & Lian Pin Koh, 2023. "The neglected role of abandoned cropland in supporting both food security and climate change mitigation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Wei Tu & Wei Wang & Qin-Pu Liu & Ming-Hsiang Chen & Mark Beattie, 2024. "Environmental risks from tourism carbon emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25049-25069, October.
    13. Zhen Yu & Shirong Liu & Haikui Li & Jingjing Liang & Weiguo Liu & Shilong Piao & Hanqin Tian & Guoyi Zhou & Chaoqun Lu & Weibin You & Pengsen Sun & Yanli Dong & Stephen Sitch & Evgenios Agathokleous, 2024. "Maximizing carbon sequestration potential in Chinese forests through optimal management," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Natalia Hasler & Christopher A. Williams & Vanessa Carrasco Denney & Peter W. Ellis & Surendra Shrestha & Drew E. Terasaki Hart & Nicholas H. Wolff & Samantha Yeo & Thomas W. Crowther & Leland K. Werd, 2024. "Accounting for albedo change to identify climate-positive tree cover restoration," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Monica L. Noon & Allie Goldstein & Juan Carlos Ledezma & Patrick R. Roehrdanz & Susan C. Cook-Patton & Seth A. Spawn-Lee & Timothy Maxwell Wright & Mariano Gonzalez-Roglich & David G. Hole & Johan Roc, 2022. "Mapping the irrecoverable carbon in Earth’s ecosystems," Nature Sustainability, Nature, vol. 5(1), pages 37-46, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2024:i:1:p:56-:d:1557497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.