IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1206-d1450276.html
   My bibliography  Save this article

Climate and Land Use Changes Impact the Future of European Amphibian Functional Diversity

Author

Listed:
  • Konstantinos Proios

    (Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Danai-Eleni Michailidou

    (Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Maria Lazarina

    (Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Mariana A. Tsianou

    (Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Athanasios S. Kallimanis

    (Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Climate and land use changes drive shifts in species distributions, causing variations in species richness. Yet the influence of shifts in species distributions on functional diversity at broad spatial scales remains uncertain. Here, we explored the potential effect of climate and land use changes on the functional diversity of European amphibian assemblages from the present to 2050, along with their effect on species richness. We performed species distribution modelling using a scenario of climate and land use change to estimate current and future potential distributions of 73 species. We estimated functional diversity using morphological and ecological functional traits. Our results highlight the intricate effects of climate and land use changes on taxonomic and functional diversity of amphibians. A climate-induced northward expansion of amphibians is anticipated, with temperature, precipitation, and forest cover prominently shaping future assemblages. Species expected to have shrinking ranges ( n = 35) tend to mature sexually at a later age, produce fewer offspring per reproductive event, and live at higher maximum altitudes compared to species expected to expand ( n = 38). Furthermore, trait composition changes are expected to exceed predictions based solely on species richness. These changes will vary geographically, with northern regions likely experiencing substantial increases in functional richness and functional redundancy, i.e., the coexistence of species with similar functional roles. Our findings underscore that functional diversity changes might serve as an early warning signal to assess human impacts on biodiversity.

Suggested Citation

  • Konstantinos Proios & Danai-Eleni Michailidou & Maria Lazarina & Mariana A. Tsianou & Athanasios S. Kallimanis, 2024. "Climate and Land Use Changes Impact the Future of European Amphibian Functional Diversity," Land, MDPI, vol. 13(8), pages 1-23, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1206-:d:1450276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Hof & Miguel B. Araújo & Walter Jetz & Carsten Rahbek, 2011. "Additive threats from pathogens, climate and land-use change for global amphibian diversity," Nature, Nature, vol. 480(7378), pages 516-519, December.
    2. Jennifer A. Luedtke & Janice Chanson & Kelsey Neam & Louise Hobin & Adriano O. Maciel & Alessandro Catenazzi & Amaël Borzée & Amir Hamidy & Anchalee Aowphol & Anderson Jean & Ángel Sosa-Bartuano & Ans, 2023. "Ongoing declines for the world’s amphibians in the face of emerging threats," Nature, Nature, vol. 622(7982), pages 308-314, October.
    3. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    2. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    3. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    4. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    5. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    6. Nicoletta Cannone & M. Guglielmin & P. Convey & M. R. Worland & S. E. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
    7. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    9. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    10. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    11. Donohue, John G. & Piiroinen, Petri T., 2015. "Mathematical modelling of seasonal migration with applications to climate change," Ecological Modelling, Elsevier, vol. 299(C), pages 79-94.
    12. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    13. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    14. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    15. Ding, Helen & Nunes, Paulo A.L.D., 2014. "Modeling the links between biodiversity, ecosystem services and human wellbeing in the context of climate change: Results from an econometric analysis of the European forest ecosystems," Ecological Economics, Elsevier, vol. 97(C), pages 60-73.
    16. Chan, Nathan & Wichman, Casey, 2017. "The Effects of Climate on Leisure Demand: Evidence from North America," RFF Working Paper Series 17-20, Resources for the Future.
    17. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    18. Richter, Andries & Grasman, Johan, 2013. "The transmission of sustainable harvesting norms when agents are conditionally cooperative," Ecological Economics, Elsevier, vol. 93(C), pages 202-209.
    19. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    20. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1206-:d:1450276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.