IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p1036-d1432492.html
   My bibliography  Save this article

How Does Density Impact Carbon Emission Intensity: Insights from the Block Scale and an Optimal Parameters-Based Geographical Detector

Author

Listed:
  • Liutong Li

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Fengying Yan

    (School of Architecture, Tianjin University, Tianjin 300072, China)

Abstract

Density is a crucial indicator for urban sustainable development and is considered a critical factor influencing the carbon emission intensity of construction land (CICL). The impact of density on carbon emissions has been extensively explored, mainly focusing on grid-scale and single-factor effects. However, how density and its interactions affect carbon emissions at the block scale is unclear. Therefore, based on multiple data sources such as energy consumption, remote sensing, and the point of interest (POI) in the urban block of Changxing County, this study constructed a density system that reflects the block’s physical environment and socioeconomic characteristics. An optimal-parameters-based geographical detector was employed to investigate the effects and interactions of density factors on the carbon emission intensity of residential blocks (CIRB), carbon emission intensity of commercial blocks (CICB), and carbon emission intensity of public blocks (CIPB). The results indicate the following: (1) The impact of density factors on different types of CICL varied significantly. Physical environmental factors (PEFs) had greater explanatory power than socioeconomic factors (SEFs) across the CIRB, CICB, and CIPB, with the floor area ratio (FAR) being the most influential. The spatial morphology of blocks also influenced the relationship between density factors and the CICL. (2) The interactions between the FAR and building density (BD), the FAR and commercial outlet density (COD), and the FAR and population density (PD) had the strongest explanatory power for the CIRB, CICB, and CIPB, respectively, and all exhibited nonlinear enhancements. Some factors exhibited more significant effects only when interacting with others. (3) An association chain encompassing the interactions of multiple density factors was extracted for the CIRB, CICB, and CIPB, respectively, as the basis for conducting collaborative management and control in spatial planning. The research findings can provide decision support for urban planners to consider the comprehensive effects of density factors and promote the development of low-carbon urban spaces.

Suggested Citation

  • Liutong Li & Fengying Yan, 2024. "How Does Density Impact Carbon Emission Intensity: Insights from the Block Scale and an Optimal Parameters-Based Geographical Detector," Land, MDPI, vol. 13(7), pages 1-18, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1036-:d:1432492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/1036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/1036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ian W.H. Parry & Roberton C. Williams III & Lawrence H. Goulder, 2002. "When Can Carbon Abatement Policies Increase Welfare? The Fundamental Role of Distorted Factor Markets," Chapters, in: Lawrence H. Goulder (ed.), Environmental Policy Making in Economies with Prior Tax Distortions, chapter 25, pages 471-503, Edward Elgar Publishing.
    2. Liddle, Brantley, 2013. "Urban density and climate change: a STIRPAT analysis using city-level data," Journal of Transport Geography, Elsevier, vol. 28(C), pages 22-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Vielle & Alain L. Bernard, 1998. "Un exemple d'utilisation : le coût de politiques de réduction des gaz à effet de serre," Économie et Prévision, Programme National Persée, vol. 136(5), pages 33-48.
    2. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    3. Lawrence H. Goulder, 2013. "Markets for Pollution Allowances: What Are the (New) Lessons?," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 87-102, Winter.
    4. Sanstad, Alan H. & DeCanio, Stephen J. & Boyd, Gale A. & Koomey, Jonathan G., 2001. "Estimating bounds on the economy-wide effects of the CEF policy scenarios," Energy Policy, Elsevier, vol. 29(14), pages 1299-1311, November.
    5. Bjertnæs, Geir H. & Tsygankova, Marina & Martinsen, Thomas, 2013. "Norwegian climate policy reforms in the presence of an international quota market," Energy Economics, Elsevier, vol. 39(C), pages 147-158.
    6. Mbéa Bell & Sylvain Dessy, 2017. "Market Power and Instrument Choice in Climate Policy," Cahiers de recherche 1704, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    7. Brita Bye & Karine Nyborg, 1999. "The Welfare Effects of Carbon Policies: Grandfathered Quotas versus Differentiated Taxes," Discussion Papers 261, Statistics Norway, Research Department.
    8. Govinda R. Timilsina & Ram M. Shrestha, 2002. "General equilibrium analysis of economic and environmental effects of carbon tax in a developing country: case of Thailand," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 5(3), pages 179-211, September.
    9. Labandeira, Xavier & Labeaga, José M. & Rodríguez, Miguel, 2009. "An integrated economic and distributional analysis of energy policies," Energy Policy, Elsevier, vol. 37(12), pages 5776-5786, December.
    10. Bin Ye & Jingjing Jiang & Lixin Miao & Ji Li & Yang Peng, 2015. "Innovative Carbon Allowance Allocation Policy for the Shenzhen Emission Trading Scheme in China," Sustainability, MDPI, vol. 8(1), pages 1-23, December.
    11. Ian W.H. Parry, 2005. "Fiscal Interactions and the Costs of Controlling Pollution from Electricity," RAND Journal of Economics, The RAND Corporation, vol. 36(4), pages 849-869, Winter.
    12. Ian W. H. Parry & Antonio Bento, 2001. "Revenue Recycling and the Welfare Effects of Road Pricing," Scandinavian Journal of Economics, Wiley Blackwell, vol. 103(4), pages 645-671, December.
    13. Liu, Jingming & Hou, Xianhui & Wang, Zhanqi & Shen, Yue, 2021. "Study the effect of industrial structure optimization on urban land-use efficiency in China," Land Use Policy, Elsevier, vol. 105(C).
    14. Kverndokk, Snorre & Rose, Adam, 2008. "Equity and Justice in Global Warming Policy," International Review of Environmental and Resource Economics, now publishers, vol. 2(2), pages 135-176, October.
    15. van Kooten, G. Cornelis, 2004. "Economics of Forest and Agricultural Carbon Sinks," Working Papers 18160, University of Victoria, Resource Economics and Policy.
    16. Lori Bennear & Robert Stavins, 2007. "Second-best theory and the use of multiple policy instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 111-129, May.
    17. Robert N. Stavins, 1998. "What Can We Learn from the Grand Policy Experiment? Lessons from SO2 Allowance Trading," Journal of Economic Perspectives, American Economic Association, vol. 12(3), pages 69-88, Summer.
    18. Dissou, Yazid, 2005. "Cost-effectiveness of the performance standard system to reduce CO2 emissions in Canada: a general equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 27(3), pages 187-207, October.
    19. Parry, Ian W. H. & Williams III, Roberton C., 1999. "A second-best evaluation of eight policy instruments to reduce carbon emissions," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 347-373, August.
    20. Chen, Zi-yue & Nie, Pu-yan, 2016. "Effects of carbon tax on social welfare: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1607-1615.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1036-:d:1432492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.