IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i6p863-d1415559.html
   My bibliography  Save this article

Impacts of Cropland Utilization Patterns on the Sustainable Use Efficiency of Cropland Based on the Human–Land Perspective

Author

Listed:
  • Xinyu Hu

    (School of Geomatics, Liaoning Technical University, Fuxin 123000, China
    Chinese Academy of Surveying and Mapping, Beijing 100039, China)

  • Chun Dong

    (Chinese Academy of Surveying and Mapping, Beijing 100039, China)

  • Yu Zhang

    (Chinese Academy of Surveying and Mapping, Beijing 100039, China)

Abstract

Confronted with China’s burgeoning population and finite arable land resources, the enhancement of sustainable arable land efficiency is of paramount importance. This study, grounded in the United Nations Sustainable Development Goals (SDGs), introduces a robust framework for assessing sustainable arable land use. Utilizing the Sustainable Utilization of Arable Land (SUA) indicator system, the DGA–Super-SBM model, the Malmquist–Luenberger production index, and the TO–Fisher–OSM algorithm, we evaluated the efficiency of sustainable utilization of arable land (ESUA) in 52 prefecture-level cities within China’s major grain-producing regions of the Yellow and Huaihai Seas. We analyzed the cropland utilization patterns from 2010 to 2020, examining the influence of these patterns on sustainable utilization efficiency. Our findings indicate that between 2010 and 2020, the arable land usage in these regions exhibited minimal transformation, primarily shifting towards construction land and conversely from grassland and water systems. Notably, the ESUA of arable land demonstrated an upward trend, characterized by pronounced spatial clustering, enduring high efficiency in the northern regions, and a significant surge in the southern sectors. The declining ESUA (D-ESUA) trend was general but increased in half of the cities. The change in the center of gravity of ESUA correlated with the north–south movement of the proportion of cultivated land area, the turn-in rate, and the turn-out rate, yet moved in the opposite direction to that of cultivated land density and yield per unit area. Variables such as the replanting index, cropland density, yield per unit area, and cropland turn-in rate significantly affected ESUA. These findings offer a scientific basis and decision-making support for optimizing the utilization pattern of arable land and achieving a rational allocation of arable land resources.

Suggested Citation

  • Xinyu Hu & Chun Dong & Yu Zhang, 2024. "Impacts of Cropland Utilization Patterns on the Sustainable Use Efficiency of Cropland Based on the Human–Land Perspective," Land, MDPI, vol. 13(6), pages 1-27, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:863-:d:1415559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/6/863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/6/863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junxiao Wang & Xiaorui Wang & Shenglu Zhou & Shaohua Wu & Yan Zhu & Chunfeng Lu, 2016. "Optimization of Sample Points for Monitoring Arable Land Quality by Simulated Annealing while Considering Spatial Variations," IJERPH, MDPI, vol. 13(10), pages 1-12, September.
    2. Aparicio, Juan & Santin, Daniel, 2018. "A note on measuring group performance over time with pseudo-panels," European Journal of Operational Research, Elsevier, vol. 267(1), pages 227-235.
    3. Yifeng Hou & Yaning Chen & Zhi Li & Yang Wang, 2023. "Changes in Land Use Pattern and Structure under the Rapid Urbanization of the Tarim River Basin," Land, MDPI, vol. 12(3), pages 1-18, March.
    4. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    5. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    6. Mingjia Chi & Qinyang Guo & Lincheng Mi & Guofeng Wang & Weiming Song, 2022. "Spatial Distribution of Agricultural Eco-Efficiency and Agriculture High-Quality Development in China," Land, MDPI, vol. 11(5), pages 1-15, May.
    7. Ziyi Zhang & Juntao Du & Zhiyang Shen & Hassan El Asraoui & Malin Song, 2024. "Effects of modern agricultural demonstration zones on cropland utilization efficiency: An empirical study based on county pilot," Post-Print hal-04552705, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiang & Grifell-Tatjé, Emili & Fu, Tsu-Tan, 2023. "A profit difference decomposition model for measuring group performance: an application to Chinese and Taiwanese commercial banks," Omega, Elsevier, vol. 120(C).
    2. Muliaman Hadad & Maximilian Hall & Karligash Kenjegalieva & Wimboh Santoso & Richard Simper, 2011. "Banking efficiency and stock market performance: an analysis of listed Indonesian banks," Review of Quantitative Finance and Accounting, Springer, vol. 37(1), pages 1-20, July.
    3. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2019. "Performance comparison of management groups under centralised management," European Journal of Operational Research, Elsevier, vol. 278(3), pages 845-854.
    4. Sun, Yu & Yang, Feng & Wang, Dawei & Ang, Sheng, 2023. "Efficiency evaluation for higher education institutions in China considering unbalanced regional development: A meta-frontier Super-SBM model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    5. Liu, Fuh-Hwa Franklin & Wang, Peng-hsiang, 2008. "DEA Malmquist productivity measure: Taiwanese semiconductor companies," International Journal of Production Economics, Elsevier, vol. 112(1), pages 367-379, March.
    6. Sun, Chuanwang & Xu, Shuai & Xu, Mengjie, 2023. "What causes green efficiency losses in Chinese agriculture? A perspective based on input redundancy," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    7. Shilin Ye & Xinhua Qi & Yecheng Xu, 2020. "Analyzing the relative efficiency of China’s Yangtze River port system," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 640-660, December.
    8. Ahn, Young-Hyo & Min, Hokey, 2014. "Evaluating the multi-period operating efficiency of international airports using data envelopment analysis and the Malmquist productivity index," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 12-22.
    9. Nocera Alves Junior, Paulo & Costa Melo, Isotilia & de Moraes Santos, Rodrigo & da Rocha, Fernando Vinícius & Caixeta-Filho, José Vicente, 2022. "How did COVID-19 affect green-fuel supply chain? - A performance analysis of Brazilian ethanol sector," Research in Transportation Economics, Elsevier, vol. 93(C).
    10. Yuanying Chi & Situo Xu & Xiaolei Yang & Jialin Li & Xufeng Zhang & Yahui Chen, 2023. "Research on Beijing Manufacturing Green-Oriented Transition Path under “Double Carbon” Goal-Based on the GML-SD Model," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    11. Aparicio, Juan & Ortiz, Lidia & Santín, Daniel, 2021. "Comparing group performance over time through the Luenberger productivity indicator: An application to school ownership in European countries," European Journal of Operational Research, Elsevier, vol. 294(2), pages 651-672.
    12. Mengchao Yao & Yihua Zhang, 2021. "Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    13. Tsui, Wai Hong Kan & Gilbey, Andrew & Balli, Hatice Ozer, 2014. "Estimating airport efficiency of New Zealand airports," Journal of Air Transport Management, Elsevier, vol. 35(C), pages 78-86.
    14. Irena Lacka & Lukasz Brzezicki, 2021. "The Efficiency and Productivity Evaluation of National Innovation Systems in Europe," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 3), pages 471-496.
    15. Thi-Nham Le & Chia-Nan Wang, 2017. "The Integrated Approach for Sustainable Performance Evaluation in Value Chain of Vietnam Textile and Apparel Industry," Sustainability, MDPI, vol. 9(3), pages 1-21, March.
    16. Aparicio, Juan & Santín, Daniel, 2024. "Global and local technical changes: A new decomposition of the Malmquist productivity index using virtual units," Economic Modelling, Elsevier, vol. 134(C).
    17. Jiangfeng Hu & Zhao Wang & Yuehan Lian & Qinghua Huang, 2018. "Environmental Regulation, Foreign Direct Investment and Green Technological Progress—Evidence from Chinese Manufacturing Industries," IJERPH, MDPI, vol. 15(2), pages 1-14, January.
    18. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    19. Shuai Wang & Cunyi Yang & Zhenghui Li, 2021. "Spatio-Temporal Evolution Characteristics and Spatial Interaction Spillover Effects of New-Urbanization and Green Land Utilization Efficiency," Land, MDPI, vol. 10(10), pages 1-26, October.
    20. Gabriella Sicilia & Rosa Simancas, 2023. "Eficiencia y equidad educativa en España: un análisis comparativo a nivel regional," Hacienda Pública Española / Review of Public Economics, IEF, vol. 245(2), pages 7-33, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:863-:d:1415559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.