IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i6p849-d1414609.html
   My bibliography  Save this article

Influences of Vegetation Rehabilitation on Soil Infiltrability and Root Morphological Characteristics in Coastal Saline Soil

Author

Listed:
  • Linlin Chu

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China)

  • Si Yuan

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China)

  • Dan Chen

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China)

  • Yaohu Kang

    (Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Hiba Shaghaleh

    (College of Environment, Hohai University, Nanjing 210098, China)

  • Mohamed A. El-Tayeb

    (Botany and Microbiology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia)

  • Mohamed S. Sheteiwy

    (Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates
    Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt)

  • Yousef Alhaj Hamoud

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract

Soil’s hydraulic properties are an essential characteristic that influences the hydrologic cycle by influencing infiltration and runoff and the transport of soil water and salt in the process of vegetation rehabilitation in coastal saline soils. To date, few studies have specifically addressed the soil’s hydraulic properties and root–soil interactions of coastal saline soil under revegetation. This study aimed to identify the unique hydraulic characteristics of soil, the pore size distribution parameter, Gardner α, and the different contributions of soil’s physical properties and vegetation’s root morphological characteristics with regard to soil infiltration. For this purpose, disc infiltration experiments at different pressure heads were performed on three vegetation types, Salix matsudana (SM), Hibiscus syriacus (HC), and Sabina vulgaris (SV), after two years of vegetation rehabilitation. The results demonstrated that the initial and steady infiltration rate, Gardner α, and soil porosity fraction exhibit significant differences among the three plant species. A correlation analysis indicated that the soil water content, surface area, density, and dry weight of roots had inverse relationships with soil infiltration at heads of pressure of 0 cm and 9 cm. The regulation of soil infiltration was influenced by the root dry weight and root average diameter, which played crucial roles in determining the roots’ morphological properties and the formation of pathways and soil pores.

Suggested Citation

  • Linlin Chu & Si Yuan & Dan Chen & Yaohu Kang & Hiba Shaghaleh & Mohamed A. El-Tayeb & Mohamed S. Sheteiwy & Yousef Alhaj Hamoud, 2024. "Influences of Vegetation Rehabilitation on Soil Infiltrability and Root Morphological Characteristics in Coastal Saline Soil," Land, MDPI, vol. 13(6), pages 1-15, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:849-:d:1414609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/6/849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/6/849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yu & Guo, Lei & Huang, Ze & López-Vicente, Manuel & Wu, Gao-Lin, 2020. "Root morphological characteristics and soil water infiltration capacity in semi-arid artificial grassland soils," Agricultural Water Management, Elsevier, vol. 235(C).
    2. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2020. "Prospects of using drip irrigation for ecological conservation and reclaiming highly saline soils at the edge of Yinchuan Plain," Agricultural Water Management, Elsevier, vol. 239(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongwei Liu & Zhenzhen Yang & Changxiong Zhu & Baogang Zhang & Hongna Li, 2023. "The Eco-Agricultural Industrial Chain: The Meaning, Content and Practices," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    2. Qiyang Fu & Fanxiang Meng & Yuan Zhang & Zongliang Wang & Tianxiao Li & Renjie Hou, 2022. "Ameliorating Effects of Soil Aggregate Promoter on the Physicochemical Properties of Solonetzes in the Songnen Plain of Northeast China," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    3. Daniel Morales Martínez & Alexandre Gori Maia & Junior Ruiz Garcia, 2022. "Spatial diffusion of efficient irrigation systems: a study of São Paulo, Brazil," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 690-712, July.
    4. Masoud Pourgholam-Amiji & Mojtaba Khoshravesh & Muhammad Mohsin Waqas, 2020. "Study Of Combined Magnetized Water And Salinity On Soil Permeability In North Of Iran," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 69-73, June.
    5. Xiuzi Ren & Xiaohong Chai & Yuanyuan Qu & Yuanhui Xu & Farhat Ullah Khan & Junfeng Wang & Palixiati Geming & Weiwei Wang & Qi Zhang & Qinxuan Wu & Xuexuan Xu & Feng Du, 2023. "Restoration of Grassland Improves Soil Infiltration Capacity in Water-Wind Erosion Crisscross Region of China’s Loess Plateau," Land, MDPI, vol. 12(8), pages 1-17, July.
    6. Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
    7. Huang, Yajie & Ma, Yibing & Zhang, Shiwen & Li, Zhen & Huang, Yuanfang, 2021. "Optimum allocation of salt discharge areas in land consolidation for irrigation districts by SahysMod," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2021. "Establishing an ecological forest system of salt-tolerant plants in heavily saline wasteland using the drip-irrigation reclamation method," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Miao, Junxia & Li, Xiaobin, 2021. "Different mulching materials influence the reclamation of saline soil and growth of the Lycium barbarum L. under drip-irrigation in saline wasteland in northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    10. Pollyana Mona Soares Dias & Jeane Cruz Portela & Joaquim Emanuel Fernandes Gondim & Rafael Oliveira Batista & Leticia Sequinatto Rossi & Jonatan Levi Ferreira Medeiros & Phâmella Kalliny Pereira Faria, 2023. "Soil Attributes and Their Interrelationships with Resistance to Root Penetration and Water Infiltration in Areas with Different Land Uses in the Apodi Plateau, Semiarid Region of Brazil," Agriculture, MDPI, vol. 13(10), pages 1-24, September.
    11. Naharuddin Naharuddin & Abdul Wahid & Golar Golar & Imran Rachman & Akhbar Akhbar & Sudirman Daeng Massiri, 2022. "Soil Infiltration In Various Areas As A Basis For Hydrlogical Alterations In The Toboli Watershed, Central Sulawesi, Indonesia," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 6(2), pages 76-80, May.
    12. Dong, Shide & Wang, Guangmei & Kang, Yaohu & Ma, Qian & Wan, Shuqin, 2022. "Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin," Agricultural Water Management, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:849-:d:1414609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.