IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i3p335-d1352086.html
   My bibliography  Save this article

Multi-Temporal Passive and Active Remote Sensing for Agricultural Mapping and Acreage Estimation in Context of Small Farm Holds in Ethiopia

Author

Listed:
  • Tesfamariam Engida Mengesha

    (Department of Remote Sensing and Application Research and Development, Ethiopian Space Science and Geospatial Institute (SSGI), Entoto Observatory and Research Center (EORC), Addis Ababa P.O. Box 33679, Ethiopia
    Remote Sensing Department, Entoto Observatory and Research Center (EORC), Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia)

  • Lulseged Tamene Desta

    (The Alliance of Bioversity International and CIAT, Addis Ababa P.O. Box 5689, Ethiopia)

  • Paolo Gamba

    (Telecommunications and Remote Sensing Laboratory, University of Pavia, 27100 Pavia, Italy)

  • Getachew Tesfaye Ayehu

    (The Alliance of Bioversity International and CIAT, Addis Ababa P.O. Box 5689, Ethiopia)

Abstract

In most developing countries, smallholder farms are the ultimate source of income and produce a significant portion of overall crop production for the major crops. Accurate crop distribution mapping and acreage estimation play a major role in optimizing crop production and resource allocation. In this study, we aim to develop a spatio–temporal, multi-spectral, and multi-polarimetric LULC mapping approach to assess crop distribution mapping and acreage estimation for the Oromia Region in Ethiopia. The study was conducted by integrating data from the optical and radar sensors of sentinel products. Supervised machine learning algorithms such as Support Vector Machine, Random Forest, Classification and Regression Trees, and Gradient Boost were used to classify the study area into five first-class common land use types (built-up, agriculture, vegetation, bare land, and water). Training and validation data were collected from ground and high-resolution images and split in a 70:30 ratio. The accuracy of the classification was evaluated using different metrics such as overall accuracy, kappa coefficient, figure of metric, and F-score. The results indicate that the SVM classifier demonstrates higher accuracy compared to other algorithms, with an overall accuracy for Sentinel-2-only data and the integration of optical with microwave data of 90% and 94% and a kappa value of 0.85 and 0.91, respectively. Accordingly, the integration of Sentinel-1 and Sentinel-2 data resulted in higher overall accuracy compared to the use of Sentinel-2 data alone. The findings demonstrate the remarkable potential of multi-source remotely sensed data in agricultural acreage estimation in small farm holdings. These preliminary findings highlight the potential of using multi-source active and passive remote sensing data for agricultural area mapping and acreage estimation.

Suggested Citation

  • Tesfamariam Engida Mengesha & Lulseged Tamene Desta & Paolo Gamba & Getachew Tesfaye Ayehu, 2024. "Multi-Temporal Passive and Active Remote Sensing for Agricultural Mapping and Acreage Estimation in Context of Small Farm Holds in Ethiopia," Land, MDPI, vol. 13(3), pages 1-29, March.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:335-:d:1352086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/3/335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/3/335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Calogero Carletto & Dean Jolliffe & Raka Banerjee, 2015. "From Tragedy to Renaissance: Improving Agricultural Data for Better Policies," Journal of Development Studies, Taylor & Francis Journals, vol. 51(2), pages 133-148, February.
    2. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    3. Jane Ferah Gondwe & Sun Lin & Rodger Millar Munthali & Li Li, 2021. "Analysis of Land Use and Land Cover Changes in Urban Areas Using Remote Sensing: Case of Blantyre City," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-17, December.
    4. Diogo Duarte & Cidália Fonte & Hugo Costa & Mário Caetano, 2023. "Thematic Comparison between ESA WorldCover 2020 Land Cover Product and a National Land Use Land Cover Map," Land, MDPI, vol. 12(2), pages 1-16, February.
    5. Rehab Mahmoud & Mohamed Hassanin & Haytham Al Feel & Rasha M. Badry, 2023. "Machine Learning-Based Land Use and Land Cover Mapping Using Multi-Spectral Satellite Imagery: A Case Study in Egypt," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    6. Nicola Clerici & Cesar Augusto Valbuena Calderón & Juan Manuel Posada, 2017. "Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: a case study in the lower Magdalena region, Colombia," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 718-726, November.
    7. Ken E. Giller & Thomas Delaune & João Vasco Silva & Mark Wijk & James Hammond & Katrien Descheemaeker & Gerrie Ven & Antonius G. T. Schut & Godfrey Taulya & Regis Chikowo & Jens A. Andersson, 2021. "Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1431-1454, December.
    8. Maindonald, John, 2009. "Statistical Learning from a Regression Perspective," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(b12).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    2. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    3. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    4. Jules Gazeaud & Victor Stephane, 2023. "Productive Workfare? Evidence from Ethiopia's Productive Safety Net Program," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 265-290, January.
    5. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    6. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    7. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    8. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    9. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    10. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    11. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    12. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    13. Boudewijn van Leeuwen & Zalán Tobak & Ferenc Kovács, 2020. "Sentinel-1 and -2 Based near Real Time Inland Excess Water Mapping for Optimized Water Management," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    14. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    15. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    16. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    17. Yuta J. Masuda & Jonathan R.B. Fisher & Wei Zhang & Carolina Castilla & Timothy M. Boucher & Genowefa Blundo‐Canto, 2020. "A respondent‐driven method for mapping small agricultural plots using tablets and high resolution imagery," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(5), pages 727-748, July.
    18. Vaiknoras, Kate A. & Larochelle, Catherine & Alwang, Jeffrey, 2021. "How the adoption of drought-tolerant rice varieties impacts households in a non-drought year: Evidence from Nepal," 2021 Annual Meeting, August 1-3, Austin, Texas 313877, Agricultural and Applied Economics Association.
    19. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    20. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:335-:d:1352086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.