IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v97y2019i2d10.1007_s11069-019-03661-w.html
   My bibliography  Save this article

Monitoring and analysis of geological hazards in Three Gorges area based on load impact change

Author

Listed:
  • Wei Wang

    (Chinese Academy of Surveying and Mapping)

  • Chuanyin Zhang

    (Chinese Academy of Surveying and Mapping)

  • Minzhang Hu

    (Earthquake Administration China)

  • Qiang Yang

    (Chinese Academy of Surveying and Mapping)

  • Shiming Liang

    (Earthquake Administration China)

  • Shengjun Kang

    (National Administration of Surveying, Mapping and Geoinformation)

Abstract

Geological hazard monitoring is essential to the prevention and control of geological hazards, yet conventional monitoring is often conducted for local geological hazards, and the relation between monitored results and geological hazards remains poorly understood. In this study, a regional load deformation field model was constructed using data from 26 Continuously Operating Reference Stations (CORS) and 8 gravity stations in the Three Gorges area. The relation between load-induced changes and geological hazards, as the regular characteristics (RCS) in this paper, is obtained by comparing the geological hazards with the impact of the total load change in the whole region of the Three Gorges area and the entire process from 2011 to the beginning of 2015. Geological hazards are more prone to occurring when there are one or more RCS, especially abnormal dynamic environment appears at the same time, such as solid high tide and heavy rainfall. The RCS included the ground geodesy height change rate increasing, the ground gravity change rate decreasing, the ground vertical deviation diverging, the ground geodesy height gradient growing larger and the ground gravity gradient growing larger. Using all of the 18 geological hazards from May to July 2013 to verify the RCS, it was found that the comprehensive observations of CORS and gravity stations can effectively monitor the RCS of the load-induced changes. The results of this study provide more insights associated with the geological hazards monitoring and analysis methods as well as effective support for geological hazard forecasting.

Suggested Citation

  • Wei Wang & Chuanyin Zhang & Minzhang Hu & Qiang Yang & Shiming Liang & Shengjun Kang, 2019. "Monitoring and analysis of geological hazards in Three Gorges area based on load impact change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 611-622, June.
  • Handle: RePEc:spr:nathaz:v:97:y:2019:i:2:d:10.1007_s11069-019-03661-w
    DOI: 10.1007/s11069-019-03661-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03661-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03661-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiwei Yu & Jindong Hou & Jun Lv & Guizhi Ba, 2015. "Economic benefit assessment of the geo-hazard monitoring and warning engineering system in the Three Gorges Reservoir area: a case study of the landslide in Zigui," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 219-231, February.
    2. A. Carrara & F. Guzzetti & M. Cardinali & P. Reichenbach, 1999. "Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 117-135, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marko Sinčić & Sanja Bernat Gazibara & Martin Krkač & Hrvoje Lukačić & Snježana Mihalić Arbanas, 2022. "The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments," Land, MDPI, vol. 11(8), pages 1-37, August.
    2. Mehrnoosh Jadda & Helmi Shafri & Shattri Mansor, 2011. "PFR model and GiT for landslide susceptibility mapping: a case study from Central Alborz, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 395-412, May.
    3. Chen, Xiuzhi & Liu, Chang & van Oel, Pieter & Mergia Mekonnen, Mesfin & Thorp, Kelly R. & Yin, Tuo & Wang, Jinyan & Muhammad, Tahir & Li, Yunkai, 2022. "Water and carbon risks within hydropower development on national scale," Applied Energy, Elsevier, vol. 325(C).
    4. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    5. Zhi-hua Yang & Heng-xing Lan & Xing Gao & Lang-ping Li & Yun-shan Meng & Yu-ming Wu, 2015. "Urgent landslide susceptibility assessment in the 2013 Lushan earthquake-impacted area, Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2467-2487, February.
    6. Malcolm Anderson & Liz Holcombe & Rob Flory & Jean-Philippe Renaud, 2008. "Implementing low-cost landslide risk reduction: a pilot study in unplanned housing areas of the Caribbean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 297-315, December.
    7. Gerardo Grelle & Antonietta Rossi & Paola Revellino & Luigi Guerriero & Francesco Maria Guadagno & Giuseppe Sappa, 2019. "Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    8. Jaydip Dey & Saurabh Sakhre & Ritesh Vijay & Hemant Bherwani & Rakesh Kumar, 2021. "Geospatial assessment of urban sprawl and landslide susceptibility around the Nainital lake, Uttarakhand, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3543-3561, March.
    9. Mowen Xie & Tetsuro Esaki & Guoyun Zhou, 2004. "GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 265-282, October.
    10. Shah Naseer & Tanveer Ul Haq & Abdullah Khan & Javed Iqbal Tanoli & Nangyal Ghani Khan & Faizan-ur-Rehman Qaiser & Syed Tallataf Hussain Shah, 2021. "GIS-based spatial landslide distribution analysis of district Neelum, AJ&K, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 965-989, March.
    11. Kyle W. Rowden & Mohamed H. Aly, 2018. "A novel triggerless approach for mass wasting susceptibility modeling applied to the Boston Mountains of Arkansas, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 347-367, May.
    12. Iuliana Armaş & Florin Vartolomei & Florica Stroia & Livioara Braşoveanu, 2014. "Landslide susceptibility deterministic approach using geographic information systems: application to Breaza town, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 995-1017, January.
    13. L. Lombardo & M. Cama & M. Maerker & E. Rotigliano, 2014. "A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1951-1989, December.
    14. Tsu-Chiang Lei & Yi-Min Huang & Bing-Jean Lee & Meng-Hsun Hsieh & Kuan-Ting Lin, 2014. "Development of an empirical model for rainfall-induced hillside vulnerability assessment: a case study on Chen-Yu-Lan watershed, Nantou, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 341-373, November.
    15. Xilin Liu & Dan Zhang, 2004. "Comparison of Two Empirical Models for Gully-Specific Debris Flow Hazard Assessment in Xiaojiang Valley of Southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(1), pages 157-175, January.
    16. Roşca Sanda & Bilaşco Ştefan & Petrea Dănuţ & Fodorean Ioan & Vescan Iuliu & Filip Sorin, 2015. "Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1573-1592, July.
    17. Constantin Şulea & Gheorghe Manolea & Dan Selişteanu, 2013. "Informational decision support for risk reduction related to hailstorm in Oltenia region: Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 835-850, March.
    18. Jorge A. Salinas-Jasso & Juan C. Montalvo-Arrieta & José R. Chapa-Guerrero, 2020. "A dynamic stability analysis for the Olinalá landslide, northeastern Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1225-1248, July.
    19. Ali Yalcin & Fikri Bulut, 2007. "Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 201-226, April.
    20. Serwan M. J. Baban & Deborah Thomas & Francis Canisius & Kamal J. Sant, 2008. "Managing development in the hillsides of Trinidad and Tobago using geoinformatics," Sustainable Development, John Wiley & Sons, Ltd., vol. 16(5), pages 314-328.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:97:y:2019:i:2:d:10.1007_s11069-019-03661-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.