IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v61y2012i1p65-83.html
   My bibliography  Save this article

Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion

Author

Listed:
  • Paolo Tarolli
  • Giulia Sofia
  • Giancarlo Dalla Fontana

Abstract

In recent years, new remote-sensed technologies, such as airborne and terrestrial laser scanner, have improved the detail and the quality of topographic information, providing topographical high-resolution and high-quality data over larger areas better than other technologies. A new generation of high-resolution (≤3 m) digital terrain models (DTMs) is now available for different areas and is widely used by researchers, offering new opportunities for the scientific community. These data call for the development of a new generation of methodologies for an objective extraction of geomorphic features, such as channel heads, channel networks, bank geometry, debris-flow channel, debris-flow deposits, scree slope, landslide and erosion scars, etc. A high-resolution DTM is able to detect the divergence/convergence of areas related to unchannelized/channelized processes with better detail than a coarse DTM. In this work, we tested the performance of new methodologies for an objective extraction of geomorphic features related to shallow landsliding processes (landslide crowns), and bank erosion in a complex mountainous terrain. Giving a procedure that automatically recognizes these geomorphic features can offer a strategic tool to map natural hazard and to ease the planning and the assessment of alpine regions. The methodologies proposed are based on the detection of thresholds derived by the statistical analysis of variability of landform curvature. The study was conducted on an area located in the Eastern Italian Alps, where an accurate field survey on shallow landsliding, erosive channelized processes, and a high-quality set of both terrestrial and airborne laser scanner elevation data is available. The analysis was conducted using a high-resolution DTM and different smoothing factors for landform curvature calculation in order to test the most suitable scale of curvature calculation for the recognition of the selected features. The results revealed that (1) curvature calculation is strongly scale-dependent, and an appropriate scale for derivation of the local geometry has to be selected according to the scale of the features to be detected; (2) such approach is useful to automatically detect and highlight the location of shallow slope failures and bank erosion, and it can assist the interpreter/operator to correctly recognize and delineate such phenomena. These results highlight opportunities but also challenges in fully automated methodologies for geomorphic feature extraction and recognition. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Paolo Tarolli & Giulia Sofia & Giancarlo Dalla Fontana, 2012. "Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 65-83, March.
  • Handle: RePEc:spr:nathaz:v:61:y:2012:i:1:p:65-83
    DOI: 10.1007/s11069-010-9695-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9695-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9695-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Carrara & F. Guzzetti & M. Cardinali & P. Reichenbach, 1999. "Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 117-135, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cucchiaro, Sara & Straffelini, Eugenio & Chang, Kuo-Jen & Tarolli, Paolo, 2021. "Mapping vegetation-induced obstruction in agricultural ditches: A low-cost and flexible approach by UAV-SfM," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Kamila Pawluszek, 2019. "Landslide features identification and morphology investigation using high-resolution DEM derivatives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 311-330, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge A. Salinas-Jasso & Juan C. Montalvo-Arrieta & José R. Chapa-Guerrero, 2020. "A dynamic stability analysis for the Olinalá landslide, northeastern Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1225-1248, July.
    2. Ali Yalcin & Fikri Bulut, 2007. "Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 201-226, April.
    3. Serwan M. J. Baban & Deborah Thomas & Francis Canisius & Kamal J. Sant, 2008. "Managing development in the hillsides of Trinidad and Tobago using geoinformatics," Sustainable Development, John Wiley & Sons, Ltd., vol. 16(5), pages 314-328.
    4. Marko Sinčić & Sanja Bernat Gazibara & Martin Krkač & Hrvoje Lukačić & Snježana Mihalić Arbanas, 2022. "The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments," Land, MDPI, vol. 11(8), pages 1-37, August.
    5. V. Che & M. Kervyn & G. Ernst & P. Trefois & S. Ayonghe & P. Jacobs & E. Ranst & C. Suh, 2011. "Systematic documentation of landslide events in Limbe area (Mt Cameroon Volcano, SW Cameroon): geometry, controlling, and triggering factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 47-74, October.
    6. Rabin Chakrabortty & Subodh Chandra Pal & Mehebub Sahana & Ayan Mondal & Jie Dou & Binh Thai Pham & Ali P. Yunus, 2020. "Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1259-1294, November.
    7. Mehrnoosh Jadda & Helmi Shafri & Shattri Mansor, 2011. "PFR model and GiT for landslide susceptibility mapping: a case study from Central Alborz, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 395-412, May.
    8. Wang Wensheng & Li Yueqing, 2012. "Hazard degree assessment of landslide using set pair analysis method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 367-379, January.
    9. Wei Wang & Chuanyin Zhang & Minzhang Hu & Qiang Yang & Shiming Liang & Shengjun Kang, 2019. "Monitoring and analysis of geological hazards in Three Gorges area based on load impact change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 611-622, June.
    10. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    11. Frederico F. Ávila & Regina C. Alvalá & Rodolfo M. Mendes & Diogo J. Amore, 2021. "The influence of land use/land cover variability and rainfall intensity in triggering landslides: a back-analysis study via physically based models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1139-1161, January.
    12. Zhi-hua Yang & Heng-xing Lan & Xing Gao & Lang-ping Li & Yun-shan Meng & Yu-ming Wu, 2015. "Urgent landslide susceptibility assessment in the 2013 Lushan earthquake-impacted area, Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2467-2487, February.
    13. Malcolm Anderson & Liz Holcombe & Rob Flory & Jean-Philippe Renaud, 2008. "Implementing low-cost landslide risk reduction: a pilot study in unplanned housing areas of the Caribbean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 297-315, December.
    14. Gerardo Grelle & Antonietta Rossi & Paola Revellino & Luigi Guerriero & Francesco Maria Guadagno & Giuseppe Sappa, 2019. "Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    15. Jaydip Dey & Saurabh Sakhre & Ritesh Vijay & Hemant Bherwani & Rakesh Kumar, 2021. "Geospatial assessment of urban sprawl and landslide susceptibility around the Nainital lake, Uttarakhand, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3543-3561, March.
    16. Mowen Xie & Tetsuro Esaki & Guoyun Zhou, 2004. "GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 265-282, October.
    17. Maria Kouli & Constantinos Loupasakis & Pantelis Soupios & Filippos Vallianatos, 2010. "Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 599-621, March.
    18. Shah Naseer & Tanveer Ul Haq & Abdullah Khan & Javed Iqbal Tanoli & Nangyal Ghani Khan & Faizan-ur-Rehman Qaiser & Syed Tallataf Hussain Shah, 2021. "GIS-based spatial landslide distribution analysis of district Neelum, AJ&K, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 965-989, March.
    19. Vahed Ghiasi & Seyed Amir Reza Ghasemi & Mahyar Yousefi, 2021. "Landslide susceptibility mapping through continuous fuzzification and geometric average multi-criteria decision-making approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 795-808, May.
    20. Kyle W. Rowden & Mohamed H. Aly, 2018. "A novel triggerless approach for mass wasting susceptibility modeling applied to the Boston Mountains of Arkansas, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 347-367, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:61:y:2012:i:1:p:65-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.