IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i10p1660-d1497117.html
   My bibliography  Save this article

The Effects of Spatial Structure and Development Intensity of the Urban Landscape on Bird Biodiversity in Anhui Province

Author

Listed:
  • Minglu Hu

    (College of Design, Hefei University, Hefei 230601, China)

  • Xinghao Lu

    (Department of Landscape Architecture, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

  • Yuncai Wang

    (Department of Landscape Architecture, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
    Joint Laboratory of Ecological Urban Design (Research Centre for Land Ecological Planning, Design and Environmental Effects, International Joint Research Centre of Urban-Rural Ecological Planning and Design), College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

Abstract

Exploring the factors that drive changes in biodiversity is a hot and critically important topic in landscape ecology and biogeography. In this study, semi-structured citizen science data and bird distribution maps were employed to gather data from 2015 to 2020 for the calculation of bird species richness, the Shannon index, and the Pielou index in Anhui Province. These metrics were utilized to assess avian biodiversity and to elucidate the spatial patterns of biodiversity distribution across the region. In this research, a structural equation model (SEM) was utilized to investigate the relationships between the three dimensions of landscape spatial structure, urban development intensity, and environmental factors on bird biodiversity, and a conceptual framework was established to identify the key driving factors. The validity, reliability, and fit of the hypothesized model were substantiated through rigorous testing, demonstrating its reasonableness. The results indicate the following: (1) In landscape spatial structure, landscape composition and configuration play crucial roles in influencing bird diversity. An increased proportion of cultivated land negatively impacts bird diversity, whereas the expansion of forested areas promotes it. At the configuration level, the Largest Patch Index (LPI) significantly enhances bird diversity, serving as the primary driving force. Landscape spatial structure affects bird diversity both directly, through its composition, and indirectly, through its configuration. (2) The dimension of urban development intensity generally shows significant negative impacts; among these, GDP has the greatest comprehensive impact and shows a significant negative impact. (3) Topography has the greatest overall impact on bird diversity among the environmental factors, with a predominantly direct positive effect. (4) Overall, urban landscape spatial structure and urban development intensity are the main driving forces of bird diversity in Anhui Province, the greatest of which is the direct effect of the urban development intensity. These results provide an important scientific basis for landscape planning and ecological protection and provide inspiration for assessing the driving factors of animal and plant diversity in other regions.

Suggested Citation

  • Minglu Hu & Xinghao Lu & Yuncai Wang, 2024. "The Effects of Spatial Structure and Development Intensity of the Urban Landscape on Bird Biodiversity in Anhui Province," Land, MDPI, vol. 13(10), pages 1-18, October.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1660-:d:1497117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/10/1660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/10/1660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James B. Grace & T. Michael Anderson & Eric W. Seabloom & Elizabeth T. Borer & Peter B. Adler & W. Stanley Harpole & Yann Hautier & Helmut Hillebrand & Eric M. Lind & Meelis Pärtel & Jonathan D. Bakke, 2016. "Integrative modelling reveals mechanisms linking productivity and plant species richness," Nature, Nature, vol. 529(7586), pages 390-393, January.
    2. David Tilman & Michael Clark & David R. Williams & Kaitlin Kimmel & Stephen Polasky & Craig Packer, 2017. "Future threats to biodiversity and pathways to their prevention," Nature, Nature, vol. 546(7656), pages 73-81, June.
    3. Forest Isbell & Andrew Gonzalez & Michel Loreau & Jane Cowles & Sandra Díaz & Andy Hector & Georgina M. Mace & David A. Wardle & Mary I. O'Connor & J. Emmett Duffy & Lindsay A. Turnbull & Patrick L. T, 2017. "Linking the influence and dependence of people on biodiversity across scales," Nature, Nature, vol. 546(7656), pages 65-72, June.
    4. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Tim Newbold & Lawrence N. Hudson & Samantha L. L. Hill & Sara Contu & Igor Lysenko & Rebecca A. Senior & Luca Börger & Dominic J. Bennett & Argyrios Choimes & Ben Collen & Julie Day & Adriana De Palma, 2015. "Global effects of land use on local terrestrial biodiversity," Nature, Nature, vol. 520(7545), pages 45-50, April.
    6. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cepic, Michael & Bechtold, Ulrike & Wilfing, Harald, 2022. "Modelling human influences on biodiversity at a global scale–A human ecology perspective," Ecological Modelling, Elsevier, vol. 465(C).
    2. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    3. Guangdong Li & Chuanglin Fang & James E. M. Watson & Siao Sun & Wei Qi & Zhenbo Wang & Jianguo Liu, 2024. "Mixed effectiveness of global protected areas in resisting habitat loss," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Chen, Si & Shahi, Chander & Chen, Han Y.H. & Kumar, Praveen & Ma, Zilong & McLaren, Brian, 2018. "Trade-offs and Synergies Between Economic Gains and Plant Diversity Across a Range of Management Alternatives in Boreal Forests," Ecological Economics, Elsevier, vol. 151(C), pages 162-172.
    6. Maolin Li & Yongxun Zhang & Changhong Miao & Lulu He & Jiatao Chen, 2022. "Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020)," Land, MDPI, vol. 11(10), pages 1-22, October.
    7. Daijun Liu & Philipp Semenchuk & Franz Essl & Bernd Lenzner & Dietmar Moser & Tim M. Blackburn & Phillip Cassey & Dino Biancolini & César Capinha & Wayne Dawson & Ellie E. Dyer & Benoit Guénard & Evan, 2023. "The impact of land use on non-native species incidence and number in local assemblages worldwide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Renata Kędzior & Agnieszka Kosewska, 2022. "Landscape Heterogeneity Determines the Diversity and Life History Traits of Ground Beetles (Coleoptera: Carabidae)," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    9. Yamaura, Yuichi & Yamada, Yusuke & Matsuura, Toshiya & Tamai, Koji & Taki, Hisatomo & Sato, Tamotsu & Hashimoto, Shoji & Murakami, Wataru & Toda, Kenichiro & Saito, Hitoshi & Nanko, Kazuki & Ito, Erik, 2021. "Modeling impacts of broad-scale plantation forestry on ecosystem services in the past 60 years and for the future," Ecosystem Services, Elsevier, vol. 49(C).
    10. Lafuite, A.-S. & Denise, G. & Loreau, M., 2018. "Sustainable Land-use Management Under Biodiversity Lag Effects," Ecological Economics, Elsevier, vol. 154(C), pages 272-281.
    11. Ang Hu & Mira Choi & Andrew J. Tanentzap & Jinfu Liu & Kyoung-Soon Jang & Jay T. Lennon & Yongqin Liu & Janne Soininen & Xiancai Lu & Yunlin Zhang & Ji Shen & Jianjun Wang, 2022. "Ecological networks of dissolved organic matter and microorganisms under global change," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Sonia Nawrocka & Hans De Witte & Margherita Pasini & Margherita Brondino, 2023. "A Person-Centered Approach to Job Insecurity: Is There a Reciprocal Relationship between the Quantitative and Qualitative Dimensions of Job Insecurity?," IJERPH, MDPI, vol. 20(7), pages 1-27, March.
    13. Md. Mominur Rahman & Bilkis Akhter, 2021. "The impact of investment in human capital on bank performance: evidence from Bangladesh," Future Business Journal, Springer, vol. 7(1), pages 1-13, December.
    14. Rami Al Sidawi & Teo Urushadze & Angelika Ploeger, 2020. "Changes in Dairy Products Value Chain in Georgia," Sustainability, MDPI, vol. 12(15), pages 1-29, July.
    15. Masashi Soga & Kevin J. Gaston & Yuichi Yamaura & Kiyo Kurisu & Keisuke Hanaki, 2016. "Both Direct and Vicarious Experiences of Nature Affect Children’s Willingness to Conserve Biodiversity," IJERPH, MDPI, vol. 13(6), pages 1-12, May.
    16. César Merino-Soto & Gina Chávez-Ventura & Verónica López-Fernández & Guillermo M. Chans & Filiberto Toledano-Toledano, 2022. "Learning Self-Regulation Questionnaire (SRQ-L): Psychometric and Measurement Invariance Evidence in Peruvian Undergraduate Students," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    17. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    18. Kristian Steensen Nielsen & Theresa M. Marteau & Jan M. Bauer & Richard B. Bradbury & Steven Broad & Gayle Burgess & Mark Burgman & Hilary Byerly & Susan Clayton & Dulce Espelosin & Paul J. Ferraro & , 2021. "Biodiversity conservation as a promising frontier for behavioural science," Nature Human Behaviour, Nature, vol. 5(5), pages 550-556, May.
    19. Yuxin Qi & Yuandong Hu, 2024. "Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    20. Nathaniel Oliver Iotti & Damiano Menin & Tomas Jungert, 2022. "Early Adolescents’ Motivations to Defend Victims of Cyberbullying," IJERPH, MDPI, vol. 19(14), pages 1-9, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1660-:d:1497117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.