IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i10p1583-d1488562.html
   My bibliography  Save this article

A Hot-Spot Analysis of Forest Roads Based on Soil Erosion and Sediment Production

Author

Listed:
  • Saleh Yousefi

    (Soil Conservation and Watershed Management Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord 88148-43114, Iran)

  • Sayed Naeim Emami

    (Soil Conservation and Watershed Management Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord 88148-43114, Iran)

  • Mohammad Nekoeimehr

    (Soil Conservation and Watershed Management Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord 88148-43114, Iran)

  • Omid Rahmati

    (Soil Conservation and Watershed Management Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj 66169-36311, Iran)

  • Fumitoshi Imaizumi

    (Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan)

  • Christopher Gomez

    (LofHazs Laboratory (Sabo), Graduate School of Oceaonology, Kobe University, Kobe 657-8501, Japan)

  • Aleksandar Valjarevic

    (Faculty of Geography, Department of Geospatial and Environmental Science, University of Belgrade, Studentski Trg 3/III, 11000 Belgrade, Serbia
    Faculty of Education, University of East Sarajevo, Semberskih Ratara 1E, 76300 Bjeljina, Bosnia and Herzegovina)

Abstract

Forest roads have been recognized as one of the significant contributors to soil erosion processes in forested areas. The construction and maintenance of forest roads can cause severe environmental impacts, including soil erosion, sedimentation, and degradation of aquatic ecosystems. The main objective of the present study is to analyze the impact of forest road networks on soil erosion and sedimentation in the context of the Zagros forestlands, Iran. This study aims to assess the soil erosion and sedimentation on forest roads in four case studies in the Zagros forestlands. This study collected data using field surveys and SEDMODL equations to determine input factors and sedimentation and erosion rates. This study found that roadside erosion is strongly correlated with geological factors, road width, and precipitation factors. The height changes of 144 benchmarks were recorded during one study year (2021–2022) on four study roads, and the measured results of erosion benchmarks indicated an average soil erosion of 3, 2.6, 4.7, and 3.5 mm per year around the Bideleh, Kohian, Nazi, and Tabarak roads, respectively. This study measured soil erosion and sedimentation at three distances (5, 15, and 25 m) from the road, and found a significant difference in the height changes of the benchmarks at varying distances from the study roads. A hot-spot analysis was conducted using GIS 10.8, and the results indicated that a significant portion of the studied forest roads had very high erosion production and hot spots. The results of the hot-spot analysis indicated that 30.8%, 22.6%, 39.8%, and 14.5% of the study forest roads, Nazi, Tabarak, Bideleh, and Kohian roads, respectively, are identified as areas with very high erosion production and hot spots. These results highlight the need for effective management strategies to minimize the impact of erosion on road infrastructure and the surrounding environment. Overall, this study provides important insights into the soil erosion and sedimentation on forest roads, and the findings presented here can be used to inform future road construction and maintenance.

Suggested Citation

  • Saleh Yousefi & Sayed Naeim Emami & Mohammad Nekoeimehr & Omid Rahmati & Fumitoshi Imaizumi & Christopher Gomez & Aleksandar Valjarevic, 2024. "A Hot-Spot Analysis of Forest Roads Based on Soil Erosion and Sediment Production," Land, MDPI, vol. 13(10), pages 1-23, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1583-:d:1488562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/10/1583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/10/1583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rabin Chakrabortty & Subodh Chandra Pal & Mehebub Sahana & Ayan Mondal & Jie Dou & Binh Thai Pham & Ali P. Yunus, 2020. "Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1259-1294, November.
    2. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    3. Lara Vilar & Israel Gómez & Javier Martínez-Vega & Pilar Echavarría & David Riaño & M Pilar Martín, 2016. "Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    4. Yanhua Zhuang & Chao Du & Liang Zhang & Yun Du & Sisi Li, 2015. "Research trends and hotspots in soil erosion from 1932 to 2013: a literature review," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 743-758, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miklós Kázmér & Keyan Fang & Yunchao Zhou & Zoltán Kern, 2024. "Rapid Estimation of Soil Erosion Rate from Exhumed Roots (Xiaolong Mts, China)," Land, MDPI, vol. 13(6), pages 1-14, May.
    2. Asghari, Shiva & Zeinalzadeh, Kamran & Kheirfam, Hossein & Habibzadeh Azar, Behnam, 2022. "The impact of cyanobacteria inoculation on soil hydraulic properties at the lab-scale experiment," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    4. Sheikh Adil Edrisi & Vishal Tripathi & Purushothaman Chirakkuzhyil Abhilash, 2019. "Performance Analysis and Soil Quality Indexing for Dalbergia sissoo Roxb. Grown in Marginal and Degraded Land of Eastern Uttar Pradesh, India," Land, MDPI, vol. 8(4), pages 1-19, April.
    5. Ilaria Zambon & Artemi Cerdà & Sirio Cividino & Luca Salvati, 2019. "The (Evolving) Vineyard’s Age Structure in the Valencian Community, Spain: A New Demographic Approach for Rural Development and Landscape Analysis," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    6. Li, Zhi-guo & Gu, Chi-ming & Zhang, Run-hua & Ibrahim, Mohamed & Zhang, Guo-shi & Wang, Li & Zhang, Run-qin & Chen, Fang & Liu, Yi, 2017. "The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China," Agricultural Water Management, Elsevier, vol. 185(C), pages 145-150.
    7. Ilaria Zambon & Artemi Cerdà & Filippo Gambella & Gianluca Egidi & Luca Salvati, 2019. "Industrial Sprawl and Residential Housing: Exploring the Interplay between Local Development and Land-Use Change in the Valencian Community, Spain," Land, MDPI, vol. 8(10), pages 1-18, September.
    8. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Saskia Keesstra & Saskia Visser & Margot De Cleen, 2021. "Achieving Land Degradation Neutrality: A Robust Soil System Forms the Basis for Nature-Based Solutions," Land, MDPI, vol. 10(12), pages 1-4, November.
    10. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Jesús Barrena-González & Jesús Rodrigo-Comino & Yeboah Gyasi-Agyei & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates," Land, MDPI, vol. 9(3), pages 1-17, March.
    12. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    13. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    14. Lucio Di Matteo & Alessandro Spigarelli & Sofia Ortenzi, 2020. "Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    15. Saskia Keesstra & Jeroen Veraart & Jan Verhagen & Saskia Visser & Marit Kragt & Vincent Linderhof & Wilfred Appelman & Jolanda van den Berg & Ayodeji Deolu-Ajayi & Annemarie Groot, 2023. "Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    16. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    17. Mulat Guadie & Eyayu Molla & Mulatie Mekonnen & Artemi Cerdà, 2020. "Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia," Land, MDPI, vol. 9(1), pages 1-15, January.
    18. Abou-Soufianou Sadda & Maud Loireau & Nouhou Salifou Jangorzo & Hassane Bil-Assanou Issoufou & Jean-Luc Chotte, 2023. "Standardized Description of Degraded Land Reclamation Actions and Mapping of Actors’ Roles: A Key Step for Action in Combatting Desertification (Niger)," Land, MDPI, vol. 12(5), pages 1-17, May.
    19. Meine van Noordwijk, 2021. "Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development," Land, MDPI, vol. 10(7), pages 1-24, July.
    20. Ali Keshavarzi & Vinod Kumar & Eduardo Leonel Bottega & Jesús Rodrigo-Comino, 2019. "Determining Land Management Zones Using Pedo-Geomorphological Factors in Potential Degraded Regions to Achieve Land Degradation Neutrality," Land, MDPI, vol. 8(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1583-:d:1488562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.