IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v60y2004i3p739-746.html
   My bibliography  Save this article

Bayesian Multivariate Logistic Regression

Author

Listed:
  • Sean M. O'Brien
  • David B. Dunson

Abstract

No abstract is available for this item.

Suggested Citation

  • Sean M. O'Brien & David B. Dunson, 2004. "Bayesian Multivariate Logistic Regression," Biometrics, The International Biometric Society, vol. 60(3), pages 739-746, September.
  • Handle: RePEc:bla:biomet:v:60:y:2004:i:3:p:739-746
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2004.00224.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ming-Hui Chen & Qi-Man Shao, 1999. "Existence of Bayesian Estimates for the Polychotomous Quantal Response Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(4), pages 637-656, December.
    2. Natarajan, Ranjini, 2001. "On the propriety of a modified Jeffreys's prior for variance components in binary random effects models," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 409-414, February.
    3. David B. Dunson & Zhen Chen & Jean Harry, 2003. "A Bayesian Approach for Joint Modeling of Cluster Size and Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 59(3), pages 521-530, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Ishant & Mishra, Sabyasachee, 2022. "Quantifying the consumer’s dependence on different information sources on acceptance of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 179-203.
    2. Julia R. Falconer & Eibe Frank & Devon L. L. Polaschek & Chaitanya Joshi, 2024. "Eliciting Informative Priors by Modeling Expert Decision Making," Decision Analysis, INFORMS, vol. 21(2), pages 77-90, June.
    3. Gabriel E Hoffman & Benjamin A Logsdon & Jason G Mezey, 2013. "PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    4. Mingan Yang, 2018. "Assessment of Noninferiority (and Equivalence) for Simple Crossover Trials Using Bayesian Approach," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 506-519, December.
    5. Constandina Koki & Loukia Meligkotsidou & Ioannis Vrontos, 2020. "Forecasting under model uncertainty: Non‐homogeneous hidden Markov models with Pòlya‐Gamma data augmentation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 580-598, July.
    6. Rainer Hirk & Kurt Hornik & Laura Vana, 2019. "Multivariate ordinal regression models: an analysis of corporate credit ratings," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 507-539, September.
    7. Zhichao Li & Xihan Tan, 2019. "Disaster-Recovery Social Capital and Community Participation in Earthquake-Stricken Ya’an Areas," Sustainability, MDPI, vol. 11(4), pages 1-15, February.
    8. Ahmed Cemiloglu & Licai Zhu & Agab Bakheet Mohammednour & Mohammad Azarafza & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm," Land, MDPI, vol. 12(7), pages 1-20, July.
    9. Reem Aljarallah & Samer A Kharroubi, 2021. "Use of Bayesian Markov Chain Monte Carlo Methods to Model Kuwait Medical Genetic Center Data: An Application to Down Syndrome and Mental Retardation," Mathematics, MDPI, vol. 9(3), pages 1-11, January.
    10. Yang, Mingan, 2012. "Bayesian variable selection for logistic mixed model with nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2663-2674.
    11. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    12. Caubet, Miguel & Samoilenko, Mariia & Drouin, Simon & Sinnett, Daniel & Krajinovic, Maja & Laverdière, Caroline & Marcil, Valérie & Lefebvre, Geneviève, 2023. "Bayesian joint modeling for causal mediation analysis with a binary outcome and a binary mediator: Exploring the role of obesity in the association between cranial radiation therapy for childhood acut," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    13. Chen, Hsiang-Chun & Wehrly, Thomas E., 2016. "Approximate uniform shrinkage prior for a multivariate generalized linear mixed model," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 148-161.
    14. Luca Zanin, 2022. "Estimating the effects of ESG scores on corporate credit ratings using multivariate ordinal logit regression," Empirical Economics, Springer, vol. 62(6), pages 3087-3118, June.
    15. Kyoungjae Lee & Xuan Cao, 2021. "Bayesian group selection in logistic regression with application to MRI data analysis," Biometrics, The International Biometric Society, vol. 77(2), pages 391-400, June.
    16. Chu, Amanda M.Y. & Omori, Yasuhiro & So, Hing-yu & So, Mike K.P., 2023. "A Multivariate Randomized Response Model for Sensitive Binary Data," Econometrics and Statistics, Elsevier, vol. 27(C), pages 16-35.
    17. Hirk, Rainer & Vana, Laura & Hornik, Kurt, 2022. "A corporate credit rating model with autoregressive errors," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 224-240.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanjia Lin & Dipankar Bandyopadhyay & Stuart R. Lipsitz & Debajyoti Sinha, 2010. "Association Models for Clustered Data with Binary and Continuous Responses," Biometrics, The International Biometric Society, vol. 66(1), pages 287-293, March.
    2. Jaakko Nevalainen & Somnath Datta & Hannu Oja, 2014. "Inference on the marginal distribution of clustered data with informative cluster size," Statistical Papers, Springer, vol. 55(1), pages 71-92, February.
    3. Michael R. Elliott & Marshall M. Joffe & Zhen Chen, 2006. "A Potential Outcomes Approach to Developmental Toxicity Analyses," Biometrics, The International Biometric Society, vol. 62(2), pages 352-360, June.
    4. Chun Yin Lee & Kin Yau Wong & Kwok Fai Lam & Dipankar Bandyopadhyay, 2023. "A semiparametric joint model for cluster size and subunit‐specific interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2010-2022, September.
    5. Kassandra Fronczyk & Athanasios Kottas, 2017. "Risk Assessment for Toxicity Experiments with Discrete and Continuous Outcomes: A Bayesian Nonparametric Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 585-601, December.
    6. Xiaoyun Li & Dipankar Bandyopadhyay & Stuart Lipsitz & Debajyoti Sinha, 2011. "Likelihood Methods for Binary Responses of Present Components in a Cluster," Biometrics, The International Biometric Society, vol. 67(2), pages 629-635, June.
    7. Shaun R. Seaman & Menelaos Pavlou & Andrew J. Copas, 2014. "Methods for observed-cluster inference when cluster size is informative: A review and clarifications," Biometrics, The International Biometric Society, vol. 70(2), pages 449-456, June.
    8. Ling Chen & Yanqin Feng & Jianguo Sun, 2017. "Regression analysis of clustered failure time data with informative cluster size under the additive transformation models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 651-670, October.
    9. Matthew W. Wheeler & A. John Bailer, 2009. "Benchmark Dose Estimation Incorporating Multiple Data Sources," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 249-256, February.
    10. Zhang, Xinyan & Sun, Jianguo, 2010. "Regression analysis of clustered interval-censored failure time data with informative cluster size," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1817-1823, July.
    11. Reem Aljarallah & Samer A Kharroubi, 2021. "Use of Bayesian Markov Chain Monte Carlo Methods to Model Kuwait Medical Genetic Center Data: An Application to Down Syndrome and Mental Retardation," Mathematics, MDPI, vol. 9(3), pages 1-11, January.
    12. Claudia Czado & Anette Heyn & Gernot Müller, 2011. "Modeling individual migraine severity with autoregressive ordered probit models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 101-121, March.
    13. Julie S. Najita & Yi Li & Paul J. Catalano, 2009. "A novel application of a bivariate regression model for binary and continuous outcomes to studies of fetal toxicity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 555-573, September.
    14. Faes, Christel & Geys, Helena & Aerts, Marc & Molenberghs, Geert, 2006. "A hierarchical modeling approach for risk assessment in developmental toxicity studies," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1848-1861, December.
    15. Glen McGee & Marianthi‐Anna Kioumourtzoglou & Marc G. Weisskopf & Sebastien Haneuse & Brent A. Coull, 2020. "On the interplay between exposure misclassification and informative cluster size," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1209-1226, November.
    16. Zhen Pang & Anthony Y. C. Kuk, 2007. "Test of Marginal Compatibility and Smoothing Methods for Exchangeable Binary Data with Unequal Cluster Sizes," Biometrics, The International Biometric Society, vol. 63(1), pages 218-227, March.
    17. Shuling Liu & Amita K. Manatunga & Limin Peng & Michele Marcus, 2017. "A joint modeling approach for multivariate survival data with random length," Biometrics, The International Biometric Society, vol. 73(2), pages 666-677, June.
    18. Julie S. Najita & Paul J. Catalano, 2013. "On Determining the BMD from Multiple Outcomes in Developmental Toxicity Studies when One Outcome is Intentionally Missing," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1500-1509, August.
    19. Ralitza V. Gueorguieva, 2005. "Comments about Joint Modeling of Cluster Size and Binary and Continuous Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 61(3), pages 862-866, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:60:y:2004:i:3:p:739-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.