IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i4p852-d1118966.html
   My bibliography  Save this article

Analysis of the Evolution Characteristics and Impact Factors of Green Production Efficiency of Grain in China

Author

Listed:
  • Hexiong Zhang

    (School of Public Administration, Central China Normal University, Wuhan 430079, China)

  • Yun Qin

    (School of Public Administration, Central China Normal University, Wuhan 430079, China
    School of Natural Resources and Surveying, Nanning Normal University, Nanning 530100, China)

  • Jinlong Xu

    (School of Public Administration, Central China Normal University, Wuhan 430079, China)

  • Wenqin Ren

    (School of Public Administration, Central China Normal University, Wuhan 430079, China)

Abstract

Ensuring sufficient food production and guaranteeing the safety and quality of food are crucial aspects of food security, how to achieve the balance between food production efficiency and environmental protection is an urgent problem and challenge to be solved. This study introduced an assessment system for the green production efficiency of grain, and measured China’s green production efficiency of grain by using the slacks-based measurement (SBM) model, kernel density estimation, and Tobit regression model. The findings show the following: (1) From 2000 to 2019, China’s green production efficiency of grain showed an overall upward trend, while in different regions it was shrinking. The central region has the fastest growth rate, the western region and the northeast region have the same growth rate, and the eastern region has the slowest growth rate. (2) According to the kernel density estimation, China’s green production efficiency of grain increased year by year, and the national development was relatively balanced from 2000 to 2104. However, there are obvious regional differences from 2014 to 2019; the eastern and northeastern regions are relatively balanced, and the central and western regions have further expanded over time. (3) From the perspective of whole country, the regional financial support for agriculture and the urbanization rate have a significant positive impact on the green production efficiency of grain, while the crop disaster affected area and agricultural output value have a significant negative impact on green production efficiency. (4) From the regional perspective, the impact of different factors on the level of green production efficiency of grain varies.

Suggested Citation

  • Hexiong Zhang & Yun Qin & Jinlong Xu & Wenqin Ren, 2023. "Analysis of the Evolution Characteristics and Impact Factors of Green Production Efficiency of Grain in China," Land, MDPI, vol. 12(4), pages 1-14, April.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:852-:d:1118966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/4/852/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/4/852/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Skevas, Theodoros & Stefanou, Spiro E. & Oude Lansink, Alfons, 2014. "Pesticide use, environmental spillovers and efficiency: A DEA risk-adjusted efficiency approach applied to Dutch arable farming," European Journal of Operational Research, Elsevier, vol. 237(2), pages 658-664.
    2. Chuansheng Wang, 2018. "An Analysis of Rural Household Livelihood Change and the Regional Effect in a Western Impoverished Mountainous Area of China," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    3. Aizhi Yu & Entai Cai & Min Yang & Zhishan Li, 2022. "An Analysis of Water Use Efficiency of Staple Grain Productions in China: Based on the Crop Water Footprints at Provincial Level," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    4. Speelman, Stijn & Buysse, Jeroen & Farolfi, Stefano & Frija, Aymen & D'Haese, Marijke & D'Haese, Luc, 2009. "Estimating the impacts of water pricing on smallholder irrigators in North West Province, South Africa," Agricultural Water Management, Elsevier, vol. 96(11), pages 1560-1566, November.
    5. Jinfeng Ding & Peng Liang & Desheng Guo & Dejun Liu & Mingxiao Yin & Min Zhu & Chunyan Li & Xinkai Zhu & Wenshan Guo, 2020. "Remedial Application of Urea Eliminates Yield Losses in Wheat Waterlogged during Stem Elongation," Agriculture, MDPI, vol. 10(1), pages 1-13, January.
    6. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    7. Xian Liu, 2022. "Analysis of Crop Sustainability Production Potential in Northwest China: Water Resources Perspective," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    8. Haokun Wang & Hong Chen & Tuyen Thi Tran & Shuai Qin, 2022. "An Analysis of the Spatiotemporal Characteristics and Diversity of Grain Production Resource Utilization Efficiency under the Constraint of Carbon Emissions: Evidence from Major Grain-Producing Areas ," IJERPH, MDPI, vol. 19(13), pages 1-25, June.
    9. Junchao Jiang & Leting Lyu & Yuechi Han & Caizhi Sun, 2021. "Effect of Climate Variability on Green and Blue Water Resources in a Temperate Monsoon Watershed, Northeastern China," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    10. Fang, Hsin-Hsiung & Lee, Hsuan-Shih & Hwang, Shiuh-Nan & Chung, Cheng-Chi, 2013. "A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach," Omega, Elsevier, vol. 41(4), pages 731-734.
    11. Jiaqi Shao & Fei Li, 2021. "Multi-Function Tradeoffs of Land System in Urbanized Areas—A Case Study of Xi’an, China," Land, MDPI, vol. 10(6), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tonghui Yu & Xuan Huang & Shanshan Jia & Xufeng Cui, 2023. "Unveiling the Spatio-Temporal Evolution and Key Drivers for Urban Green High-Quality Development: A Comparative Analysis of China’s Five Major Urban Agglomerations," Land, MDPI, vol. 12(11), pages 1-25, October.
    2. Silin Chen & Xiangyu Guo, 2024. "Analysis of the Club Convergence and Driving Factors of China’s Green Agricultural Development Levels," Agriculture, MDPI, vol. 14(4), pages 1-16, March.
    3. Yingchao Song & Yisheng Gao & Shuxin Zhang & Huizhong Dong & Xuefeng Liu, 2024. "Research on the Coupling Coordination and Driving Mechanisms of New-Type Urbanization and the Ecological Environment in China’s Yangtze River Delta," Sustainability, MDPI, vol. 16(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    2. Kiprop, Jonah Kipsaat, 2015. "An Evaluation Of Farmers Willingness To Pay For Irrigation Water In Kerio Valley Basin Kenya," Research Theses 265580, Collaborative Masters Program in Agricultural and Applied Economics.
    3. Zhang, Cheng-Yao & Oki, Taikan, 2023. "Water pricing reform for sustainable water resources management in China’s agricultural sector," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Yahya, Farzan & Lee, Chien-Chiang, 2023. "Disentangling the asymmetric effect of financialization on the green output gap," Energy Economics, Elsevier, vol. 125(C).
    5. Shih-Heng Yu & Chia-Wei Hsu, 2020. "A unified extension of super-efficiency in additive data envelopment analysis with integer-valued inputs and outputs: an application to a municipal bus system," Annals of Operations Research, Springer, vol. 287(1), pages 515-535, April.
    6. Chia-Nan Wang & Jen-Der Day & Nguyen Thi Kim Lien & Luu Quoc Chien, 2018. "Integrating the Additive Seasonal Model and Super-SBM Model to Compute the Efficiency of Port Logistics Companies in Vietnam," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    7. Guifang Li & Dongdong Ma & Cuiping Zhao & Hang Li, 2023. "The Effect of the Comprehensive Reform of Agricultural Water Prices on Farmers’ Planting Structure in the Oasis–Desert Transition Zone—A Case Study of the Heihe River Basin," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    8. West, Steele, 2021. "The Estimation of Farm Business Inefficiency in the Presence of Debt Repayment," 2021 Conference, August 17-31, 2021, Virtual 315048, International Association of Agricultural Economists.
    9. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    10. Guo, I-Lung & Lee, Hsuan-Shih & Lee, Dan, 2017. "An integrated model for slack-based measure of super-efficiency in additive DEA," Omega, Elsevier, vol. 67(C), pages 160-167.
    11. Sijia Li & Meichen Fu & Yi Tian & Yuqing Xiong & Cankun Wei, 2022. "Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(7), pages 1-18, June.
    12. Bin Fan & Mingyang Li, 2022. "The Effect of Heterogeneous Environmental Regulations on Carbon Emission Efficiency of the Grain Production Industry: Evidence from China’s Inter-Provincial Panel Data," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    13. Agnes Gold & Stefan Gold, 2019. "Drivers of Farm Efficiency and Their Potential for Development in a Changing Agricultural Setting in Kerala, India," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 31(4), pages 855-880, September.
    14. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    15. Tran, Trung Hieu & Mao, Yong & Nathanail, Paul & Siebers, Peer-Olaf & Robinson, Darren, 2019. "Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis," Omega, Elsevier, vol. 85(C), pages 156-165.
    16. K. Hervé Dakpo & Yann Desjeux & Laure Latruffe, 2023. "Cost of abating excess nitrogen on wheat plots in France: An assessment with multi‐technology modelling," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 800-815, September.
    17. Qing Zhou & Yali Zhang & Feng Wu, 2022. "Can Water Price Improve Water Productivity? A Water-Economic-Model-Based Study in Heihe River Basin, China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    18. Yajuan Wang & Xi Wu & Hongbo Zhu, 2022. "Spatio-Temporal Pattern and Spatial Disequilibrium of Cultivated Land Use Efficiency in China: An Empirical Study Based on 342 Prefecture-Level Cities," Land, MDPI, vol. 11(10), pages 1-15, October.
    19. Nocera Alves Junior, Paulo & Costa Melo, Isotilia & de Moraes Santos, Rodrigo & da Rocha, Fernando Vinícius & Caixeta-Filho, José Vicente, 2022. "How did COVID-19 affect green-fuel supply chain? - A performance analysis of Brazilian ethanol sector," Research in Transportation Economics, Elsevier, vol. 93(C).
    20. Theodoros Skevas & Teresa Serra, 2017. "Derivation of netput shadow prices under different levels of pest pressure," Journal of Productivity Analysis, Springer, vol. 48(1), pages 25-34, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:852-:d:1118966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.