IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i1d10.1007_s11069-021-05177-8.html
   My bibliography  Save this article

Application of fuzzy-AHP method for desertification assessment in Sabzevar area of Iran

Author

Listed:
  • Mostafa Dastorani

    (Hakim Sabzevari University)

Abstract

Desertification is a serious problem in most arid and semi-arid areas of the world, and especially in Iran. Combating desertification planning and any preparatory measures require detailed mapping of the current status of desertification as well as its evolvement during the time. This study, basically relying on remote sensing datasets, strives to map desertification in the Sabzevar area of Iran and identify its changes between the years 2001 and 2020. The indicators used in this study included Enhanced Vegetation Index, Vegetation Condition Index, Salinity Index, Synthetized Drought Index, Temperature Condition Index, Precipitation, Normalized Vegetation Index, and Land Surface Temperature. Analytical Hierarchical Process was used to determine the weight of the factors and the fuzzy overlay approach was used for synthesizing the thematic layer maps. According to the expert judgments, precipitation and salinity are the most important desertification factors in the area (~ 50% of the total weight). In terms of land-use changes over the past 20 years, urban, desert, croplands and bare lands grew in size at the expense of rangelands and open canopy forests which shrank greater than 3.5% (435 km2). Based on our findings, the total area of desertification classes has not changed considerably during the period but there has been a growth in very high and high desertification intensity classes by 12%. According to our findings, very high and high classes have increased between the years 2001 and 2020 mostly in the central and southern parts of the study area. The results obtained in this research are very important to the land managers of the Khorasan Razavi Province, for formulating sustainable development programs and avoiding the unwanted consequences of desertification.

Suggested Citation

  • Mostafa Dastorani, 2022. "Application of fuzzy-AHP method for desertification assessment in Sabzevar area of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 187-205, May.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05177-8
    DOI: 10.1007/s11069-021-05177-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05177-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05177-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhishek Ghosh & Shyamal Kumar Kar, 2018. "Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 349-368, October.
    2. Helen Briassoulis, 2019. "Combating Land Degradation and Desertification: The Land-Use Planning Quandary," Land, MDPI, vol. 8(2), pages 1-26, February.
    3. Abhishek Ghosh & Shyamal Kumar Kar, 2018. "Correction to: Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 369-369, October.
    4. Morteza Akbari & Hadi Memarian & Ehsan Neamatollahi & Masoud Jafari Shalamzari & Mohammad Alizadeh Noughani & Dawood Zakeri, 2021. "Prioritizing policies and strategies for desertification risk management using MCDM–DPSIR approach in northeastern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2503-2523, February.
    5. Feng Qi & Liu Wei & Xi Haiyang, 2013. "Comprehensive evaluation and indicator system of land desertification in the Heihe River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1573-1588, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Atiq Ur Rehman Tariq & Cheuk Yin Wai & Nitin Muttil, 2020. "Vulnerability Assessment of Ubiquitous Cities Using the Analytic Hierarchy Process," Future Internet, MDPI, vol. 12(12), pages 1-21, December.
    2. Zhihui Li & Keyu Song & Lu Peng, 2021. "Flood Risk Assessment under Land Use and Climate Change in Wuhan City of the Yangtze River Basin, China," Land, MDPI, vol. 10(8), pages 1-16, August.
    3. Weiwei Xie & Qingmin Meng, 2023. "An Integrated PCA–AHP Method to Assess Urban Social Vulnerability to Sea Level Rise Risks in Tampa, Florida," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    4. Cavalieri, Francesco & Franchin, Paolo & Giovinazzi, Sonia, 2023. "Multi-hazard assessment of increased flooding hazard due to earthquake-induced damage to the natural drainage system," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Rakhi Das & Gopa Samanta, 2023. "Impact of floods and river-bank erosion on the riverine people in Manikchak Block of Malda District, West Bengal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13595-13617, November.
    6. Ming Zhong & Jiao Wang & Liang Gao & Kairong Lin & Yang Hong, 2019. "Fuzzy Risk Assessment of Flash Floods Using a Cloud-Based Information Diffusion Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2537-2553, May.
    7. Haiyue Lu & Xiaoping Rui & Gadisa Fayera Gemechu & Runkui Li, 2022. "Quantitative Evaluation of Psychological Tolerance under the Haze: A Case Study of Typical Provinces and Cities in China with Severe Haze," IJERPH, MDPI, vol. 19(11), pages 1-23, May.
    8. Susmita Ghosh & Md. Mofizul Hoque & Aznarul Islam & Suman Deb Barman & Sadik Mahammad & Abdur Rahman & Nishith Kumar Maji, 2023. "Characterizing floods and reviewing flood management strategies for better community resilience in a tropical river basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1799-1832, January.
    9. Richard Abishek Selvam & Antony Ravindran Antony Jebamalai, 2023. "Application of the analytical hierarchy process (AHP) for flood susceptibility mapping using GIS techniques in Thamirabarani river basin, Srivaikundam region, Southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1065-1083, September.
    10. Hossain, Mohammad Khalid & Meng, Qingmin, 2020. "A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood," Land Use Policy, Elsevier, vol. 99(C).
    11. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    12. Pranay Paul & Rumki Sarkar, 2022. "Flood susceptible surface detection using geospatial multi-criteria framework for management practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3015-3041, December.
    13. Alaa Ahmed & Abdullah Alrajhi & Abdulaziz Alquwaizany & Ali Al Maliki & Guna Hewa, 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia," Sustainability, MDPI, vol. 14(23), pages 1-23, December.
    14. Suddhasil Bose & Subhra Halder, 2023. "Identification of crop suitable land using geospatial techniques and assessment with socio-economic factors—case study from India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(1), pages 229-253, March.
    15. Fatemeh Rezaie & Mahdi Panahi & Sayed M. Bateni & Changhyun Jun & Christopher M. U. Neale & Saro Lee, 2022. "Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1247-1283, November.
    16. Mustapha Ikirri & Farid Faik & Fatima Zahra Echogdali & Isabel Margarida Horta Ribeiro Antunes & Mohamed Abioui & Kamal Abdelrahman & Mohammed S. Fnais & Abderrahmane Wanaim & Mouna Id-Belqas & Said B, 2022. "Flood Hazard Index Application in Arid Catchments: Case of the Taguenit Wadi Watershed, Lakhssas, Morocco," Land, MDPI, vol. 11(8), pages 1-20, July.
    17. Lu Peng & Zhihui Li, 2021. "Ensemble Flood Risk Assessment in the Yangtze River Economic Belt under CMIP6 SSP-RCP Scenarios," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    18. Workineh, Nigatu Amsalu, 2021. "Rezoning prior urban planning period for urban space development in Injibara Town, Amhara National Regional State, Ethiopia," Land Use Policy, Elsevier, vol. 109(C).
    19. Helene Gichenje & José Muñoz-Rojas & Teresa Pinto-Correia, 2019. "Opportunities and Limitations for Achieving Land Degradation-Neutrality through the Current Land-Use Policy Framework in Kenya," Land, MDPI, vol. 8(8), pages 1-23, July.
    20. Gianluca Egidi & Luca Salvati & Pavel Cudlin & Rosanna Salvia & Manuela Romagnoli, 2020. "A New ‘Lexicon’ of Land Degradation: Toward a Holistic Thinking for Complex Socioeconomic Issues," Sustainability, MDPI, vol. 12(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05177-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.