IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p923-d840350.html
   My bibliography  Save this article

LSTM-Based Prediction of Mediterranean Vegetation Dynamics Using NDVI Time-Series Data

Author

Listed:
  • Christos Vasilakos

    (Department of Geography, University of the Aegean, 81100 Mytilene, Greece)

  • George E. Tsekouras

    (Department of Cultural Technology and Communications, University of the Aegean, 81100 Mytilene, Greece)

  • Dimitris Kavroudakis

    (Department of Geography, University of the Aegean, 81100 Mytilene, Greece)

Abstract

Vegetation index time-series analysis of multitemporal satellite data is widely used to study vegetation dynamics in the present climate change era. This paper proposes a systematic methodology to predict the Normalized Difference Vegetation Index (NDVI) using time-series data extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS). The key idea is to obtain accurate NDVI predictions by combining the merits of two effective computational intelligence techniques; namely, fuzzy clustering and long short-term memory (LSTM) neural networks under the framework of dynamic time warping (DTW) similarity measure. The study area is the Lesvos Island, located in the Aegean Sea, Greece, which is an insular environment in the Mediterranean coastal region. The algorithmic steps and the main contributions of the current work are described as follows. (1) A data reduction mechanism was applied to obtain a set of representative time series. (2) Since DTW is a similarity measure and not a distance, a multidimensional scaling approach was applied to transform the representative time series into points in a low-dimensional space, thus enabling the use of the Euclidean distance. (3) An efficient optimal fuzzy clustering scheme was implemented to obtain the optimal number of clusters that better described the underline distribution of the low-dimensional points. (4) The center of each cluster was mapped into time series, which were the mean of all representative time series that corresponded to the points belonging to that cluster. (5) Finally, the time series obtained in the last step were further processed in terms of LSTM neural networks. In particular, development and evaluation of the LSTM models was carried out considering a one-year period, i.e., 12 monthly time steps. The results indicate that the method identified unique time-series patterns of NDVI among different CORINE land-use/land-cover (LULC) types. The LSTM networks predicted the NDVI with root mean squared error (RMSE) ranging from 0.017 to 0.079. For the validation year of 2020, the difference between forecasted and actual NDVI was less than 0.1 in most of the study area. This study indicates that the synergy of the optimal fuzzy clustering based on DTW similarity of NDVI time-series data and the use of LSTM networks with clustered data can provide useful results for monitoring vegetation dynamics in fragmented Mediterranean ecosystems.

Suggested Citation

  • Christos Vasilakos & George E. Tsekouras & Dimitris Kavroudakis, 2022. "LSTM-Based Prediction of Mediterranean Vegetation Dynamics Using NDVI Time-Series Data," Land, MDPI, vol. 11(6), pages 1-23, June.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:923-:d:840350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Wang & Haiping Si & Zhao Gao & Lei Shi, 2022. "Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products," Agriculture, MDPI, vol. 12(10), pages 1-13, October.
    2. Gniewko Niedbała & Danuta Kurasiak-Popowska & Magdalena Piekutowska & Tomasz Wojciechowski & Michał Kwiatek & Jerzy Nawracała, 2022. "Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean ( Glycine max [L.] Merrill) Cultivar Augusta," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    3. Wang, Ying & Shi, Wenjuan & Wen, Tianyang, 2023. "Prediction of winter wheat yield and dry matter in North China Plain using machine learning algorithms for optimal water and nitrogen application," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Mohsen Sabzi-Nojadeh & Gniewko Niedbała & Mehdi Younessi-Hamzekhanlu & Saeid Aharizad & Mohammad Esmaeilpour & Moslem Abdipour & Sebastian Kujawa & Mohsen Niazian, 2021. "Modeling the Essential Oil and Trans -Anethole Yield of Fennel ( Foeniculum vulgare Mill. var. vulgare ) by Application Artificial Neural Network and Multiple Linear Regression Methods," Agriculture, MDPI, vol. 11(12), pages 1-17, November.
    5. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2022. "Prediction of Protein Content in Pea ( Pisum sativum L.) Seeds Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    6. Aqeel Iftikhar Jajja & Assad Abbas & Hasan Ali Khattak & Gniewko Niedbała & Abbas Khalid & Hafiz Tayyab Rauf & Sebastian Kujawa, 2022. "Compact Convolutional Transformer (CCT)-Based Approach for Whitefly Attack Detection in Cotton Crops," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
    7. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2023. "Prediction of Pea ( Pisum sativum L.) Seeds Yield Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    8. Jarosław Kurek & Gniewko Niedbała & Tomasz Wojciechowski & Bartosz Świderski & Izabella Antoniuk & Magdalena Piekutowska & Michał Kruk & Krzysztof Bobran, 2023. "Prediction of Potato ( Solanum tuberosum L.) Yield Based on Machine Learning Methods," Agriculture, MDPI, vol. 13(12), pages 1-25, December.
    9. Gaona, Jaime & Benito-Verdugo, Pilar & Martínez-Fernández, José & González-Zamora, Ángel & Almendra-Martín, Laura & Herrero-Jiménez, Carlos Miguel, 2023. "Predictive value of soil moisture and concurrent variables in the multivariate modelling of cereal yields in water-limited environments," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Gniewko Niedbała & Jarosław Kurek & Bartosz Świderski & Tomasz Wojciechowski & Izabella Antoniuk & Krzysztof Bobran, 2022. "Prediction of Blueberry ( Vaccinium corymbosum L.) Yield Based on Artificial Intelligence Methods," Agriculture, MDPI, vol. 12(12), pages 1-27, December.
    11. Fan Liu & Xiangtao Jiang & Zhenyu Wu, 2023. "Attention Mechanism-Combined LSTM for Grain Yield Prediction in China Using Multi-Source Satellite Imagery," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    12. Mohammad Rokhafrouz & Hooman Latifi & Ali A. Abkar & Tomasz Wojciechowski & Mirosław Czechlowski & Ali Sadeghi Naieni & Yasser Maghsoudi & Gniewko Niedbała, 2021. "Simplified and Hybrid Remote Sensing-Based Delineation of Management Zones for Nitrogen Variable Rate Application in Wheat," Agriculture, MDPI, vol. 11(11), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:923-:d:840350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.