IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1529-d922799.html
   My bibliography  Save this article

Compact Convolutional Transformer (CCT)-Based Approach for Whitefly Attack Detection in Cotton Crops

Author

Listed:
  • Aqeel Iftikhar Jajja

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 45500, Pakistan)

  • Assad Abbas

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 45500, Pakistan)

  • Hasan Ali Khattak

    (School of Electrical Engineering & Computer Science (SEECS), National University of Sciences & Technology (NUST), H12, Islamabad 44000, Pakistan)

  • Gniewko Niedbała

    (Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland)

  • Abbas Khalid

    (Department of Computer Science and IT, The University of Lahore, Lahore 54590, Pakistan)

  • Hafiz Tayyab Rauf

    (Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST18 0YB, UK)

  • Sebastian Kujawa

    (Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland)

Abstract

Cotton is one of the world’s most economically significant agricultural products; however, it is susceptible to numerous pest and virus attacks during the growing season. Pests (whitefly) can significantly affect a cotton crop, but timely disease detection can help pest control. Deep learning models are best suited for plant disease classification. However, data scarcity remains a critical bottleneck for rapidly growing computer vision applications. Several deep learning models have demonstrated remarkable results in disease classification. However, these models have been trained on small datasets that are not reliable due to model generalization issues. In this study, we first developed a dataset on whitefly attacked leaves containing 5135 images that are divided into two main classes, namely, (i) healthy and (ii) unhealthy. Subsequently, we proposed a Compact Convolutional Transformer (CCT)-based approach to classify the image dataset. Experimental results demonstrate the proposed CCT-based approach’s effectiveness compared to the state-of-the-art approaches. Our proposed model achieved an accuracy of 97.2%, whereas Mobile Net, ResNet152v2, and VGG-16 achieved accuracies of 95%, 92%, and 90%, respectively.

Suggested Citation

  • Aqeel Iftikhar Jajja & Assad Abbas & Hasan Ali Khattak & Gniewko Niedbała & Abbas Khalid & Hafiz Tayyab Rauf & Sebastian Kujawa, 2022. "Compact Convolutional Transformer (CCT)-Based Approach for Whitefly Attack Detection in Cotton Crops," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1529-:d:922799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahnoor Khalid & Muhammad Shahzad Sarfraz & Uzair Iqbal & Muhammad Umar Aftab & Gniewko Niedbała & Hafiz Tayyab Rauf, 2023. "Real-Time Plant Health Detection Using Deep Convolutional Neural Networks," Agriculture, MDPI, vol. 13(2), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Wang & Haiping Si & Zhao Gao & Lei Shi, 2022. "Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products," Agriculture, MDPI, vol. 12(10), pages 1-13, October.
    2. Christos Vasilakos & George E. Tsekouras & Dimitris Kavroudakis, 2022. "LSTM-Based Prediction of Mediterranean Vegetation Dynamics Using NDVI Time-Series Data," Land, MDPI, vol. 11(6), pages 1-23, June.
    3. Gniewko Niedbała & Danuta Kurasiak-Popowska & Magdalena Piekutowska & Tomasz Wojciechowski & Michał Kwiatek & Jerzy Nawracała, 2022. "Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean ( Glycine max [L.] Merrill) Cultivar Augusta," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    4. Wang, Ying & Shi, Wenjuan & Wen, Tianyang, 2023. "Prediction of winter wheat yield and dry matter in North China Plain using machine learning algorithms for optimal water and nitrogen application," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Mohsen Sabzi-Nojadeh & Gniewko Niedbała & Mehdi Younessi-Hamzekhanlu & Saeid Aharizad & Mohammad Esmaeilpour & Moslem Abdipour & Sebastian Kujawa & Mohsen Niazian, 2021. "Modeling the Essential Oil and Trans -Anethole Yield of Fennel ( Foeniculum vulgare Mill. var. vulgare ) by Application Artificial Neural Network and Multiple Linear Regression Methods," Agriculture, MDPI, vol. 11(12), pages 1-17, November.
    6. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2022. "Prediction of Protein Content in Pea ( Pisum sativum L.) Seeds Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    7. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2023. "Prediction of Pea ( Pisum sativum L.) Seeds Yield Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    8. Jarosław Kurek & Gniewko Niedbała & Tomasz Wojciechowski & Bartosz Świderski & Izabella Antoniuk & Magdalena Piekutowska & Michał Kruk & Krzysztof Bobran, 2023. "Prediction of Potato ( Solanum tuberosum L.) Yield Based on Machine Learning Methods," Agriculture, MDPI, vol. 13(12), pages 1-25, December.
    9. Gaona, Jaime & Benito-Verdugo, Pilar & Martínez-Fernández, José & González-Zamora, Ángel & Almendra-Martín, Laura & Herrero-Jiménez, Carlos Miguel, 2023. "Predictive value of soil moisture and concurrent variables in the multivariate modelling of cereal yields in water-limited environments," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Gniewko Niedbała & Jarosław Kurek & Bartosz Świderski & Tomasz Wojciechowski & Izabella Antoniuk & Krzysztof Bobran, 2022. "Prediction of Blueberry ( Vaccinium corymbosum L.) Yield Based on Artificial Intelligence Methods," Agriculture, MDPI, vol. 12(12), pages 1-27, December.
    11. Fan Liu & Xiangtao Jiang & Zhenyu Wu, 2023. "Attention Mechanism-Combined LSTM for Grain Yield Prediction in China Using Multi-Source Satellite Imagery," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    12. Mohammad Rokhafrouz & Hooman Latifi & Ali A. Abkar & Tomasz Wojciechowski & Mirosław Czechlowski & Ali Sadeghi Naieni & Yasser Maghsoudi & Gniewko Niedbała, 2021. "Simplified and Hybrid Remote Sensing-Based Delineation of Management Zones for Nitrogen Variable Rate Application in Wheat," Agriculture, MDPI, vol. 11(11), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1529-:d:922799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.