IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i4p559-d790865.html
   My bibliography  Save this article

Application of Cmic/Corg in the Soil Fertility Evaluation of Typical Forests in the Yulin Sandy Area

Author

Listed:
  • Yue Wang

    (School of Resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
    Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China)

  • Shan Wang

    (School of Resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
    Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China)

  • Chun-Sheng Zhou

    (School of Resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
    Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China)

  • Wen-Feng Chi

    (School of Resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
    Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China)

Abstract

The microbial quotient (Cmic/Corg) has been used extensively to evaluate agriculture soil fertility, but the microbial sensitivity should be considered during the forestry process. Therefore, the objective of this study was to examine a soil fertility evaluation method applied to four vegetation types in the Mu Us Sandland in northwestern China, using the relationship between the Cmic/Corg ratio and soil moisture, and soil temperature under the premise of microbial diversity. The final predictive value was C. microphylla (0.2198) > P. sylvestris (0.2175) > P. tabulaeformis (0.0872) > S. psammophila (0.0767). We verified the evaluation results using two traditional methods, the back-propagation (BP) artificial neural network model and principal component analysis, which are widely used to evaluate soil quality based on the soil nutrient concentration. The results were the same as the Cmic/Corg predictions. We conclude that when the soil microbes are used in soil quality evaluations, the changing pattern should be fully considered.

Suggested Citation

  • Yue Wang & Shan Wang & Chun-Sheng Zhou & Wen-Feng Chi, 2022. "Application of Cmic/Corg in the Soil Fertility Evaluation of Typical Forests in the Yulin Sandy Area," Land, MDPI, vol. 11(4), pages 1-11, April.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:559-:d:790865
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/4/559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/4/559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jizhong Zhou & Kai Xue & Jianping Xie & Ye Deng & Liyou Wu & Xiaoli Cheng & Shenfeng Fei & Shiping Deng & Zhili He & Joy D. Van Nostrand & Yiqi Luo, 2012. "Microbial mediation of carbon-cycle feedbacks to climate warming," Nature Climate Change, Nature, vol. 2(2), pages 106-110, February.
    2. W. Knorr & I. C. Prentice & J. I. House & E. A. Holland, 2005. "Long-term sensitivity of soil carbon turnover to warming," Nature, Nature, vol. 433(7023), pages 298-301, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    2. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    3. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    4. Wang, Wei & Wang, Bao-Zhong & Zhou, Rui & Ullah, Abid & Zhao, Ze-Ying & Wang, Peng-Yang & Su, Yong-Zhong & Xiong, You-Cai, 2022. "Biocrusts as a nature-based strategy (NbS) improve soil carbon and nitrogen stocks and maize productivity in semiarid environment," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    6. Zhang, Chengfu & Trofymow, John A. & Jamieson, Rob C. & Meng, Fan-Rui & Gordon, Robert & Bourque, Charles P.-A., 2010. "Litter decomposition and nitrogen mineralization from an annual to a monthly model," Ecological Modelling, Elsevier, vol. 221(16), pages 1944-1953.
    7. Post, Joachim & Krysanova, Valentina & Suckow, Felicitas & Mirschel, Wilfried & Rogasik, Jutta & Merbach, Ines, 2007. "Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins," Ecological Modelling, Elsevier, vol. 206(1), pages 93-109.
    8. Ximei Zhang & Guangming Zhang & Quansheng Chen & Xingguo Han, 2013. "Soil Bacterial Communities Respond to Climate Changes in a Temperate Steppe," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    9. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Xuanyu Tao & Zhifeng Yang & Jiajie Feng & Siyang Jian & Yunfeng Yang & Colin T. Bates & Gangsheng Wang & Xue Guo & Daliang Ning & Megan L. Kempher & Xiao Jun A. Liu & Yang Ouyang & Shun Han & Linwei W, 2024. "Experimental warming accelerates positive soil priming in a temperate grassland ecosystem," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    12. Wramneby, Anna & Smith, Benjamin & Zaehle, Sönke & Sykes, Martin T., 2008. "Parameter uncertainties in the modelling of vegetation dynamics—Effects on tree community structure and ecosystem functioning in European forest biomes," Ecological Modelling, Elsevier, vol. 216(3), pages 277-290.
    13. Xiaoxiao Li & Qi Zhang & Jing Ma & Yongjun Yang & Yifei Wang & Chen Fu, 2020. "Flooding Irrigation Weakens the Molecular Ecological Network Complexity of Soil Microbes during the Process of Dryland-to-Paddy Conversion," IJERPH, MDPI, vol. 17(2), pages 1-19, January.
    14. Sierra, J. & Brisson, N. & Ripoche, D. & Déqué, M., 2010. "Modelling the impact of thermal adaptation of soil microorganisms and crop system on the dynamics of organic matter in a tropical soil under a climate change scenario," Ecological Modelling, Elsevier, vol. 221(23), pages 2850-2858.
    15. Zhang, C.F. & Meng, F.-R. & Bhatti, J.S. & Trofymow, J.A. & Arp, Paul A., 2008. "Modeling forest leaf-litter decomposition and N mineralization in litterbags, placed across Canada: A 5-model comparison," Ecological Modelling, Elsevier, vol. 219(3), pages 342-360.
    16. Zihan Che & Deyong Yu & Kelong Chen & Hengsheng Wang & Ziwei Yang & Fumei Liu & Xia Wang, 2022. "Effects of Warming on Microbial Community Characteristics in the Soil Surface Layer of Niaodao Wetland in the Qinghai Lake Basin," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    17. Nigel W. Arnell & Emma L. Tompkins & W. Neil Adger, 2005. "Eliciting Information from Experts on the Likelihood of Rapid Climate Change," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1419-1431, December.
    18. Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
    19. Charlotte J. Alster & Allycia Laar & Jordan P. Goodrich & Vickery L. Arcus & Julie R. Deslippe & Alexis J. Marshall & Louis A. Schipper, 2023. "Quantifying thermal adaptation of soil microbial respiration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Jaehyun Lee & Youmi Oh & Sang Tae Lee & Yeon Ok Seo & Jeongeun Yun & Yerang Yang & Jinhyun Kim & Qianlai Zhuang & Hojeong Kang, 2023. "Soil organic carbon is a key determinant of CH4 sink in global forest soils," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:559-:d:790865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.