IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i23p2850-2858.html
   My bibliography  Save this article

Modelling the impact of thermal adaptation of soil microorganisms and crop system on the dynamics of organic matter in a tropical soil under a climate change scenario

Author

Listed:
  • Sierra, J.
  • Brisson, N.
  • Ripoche, D.
  • Déqué, M.

Abstract

No consensus currently exists about how climate change should affect the status of soil organic matter (SOM) in the tropics. In this study, we analyse the impact of climate change on the underlying mechanisms controlling SOM dynamics in a ferralsol under two contrasting tropical crops: maize (C4 plant) and banana (C3 plant). We model the effect of microbial thermal adaptation on carbon (C) mineralisation at the crop system scale and introduce it in the model STICS, which was previously calibrated for the soil-crop systems tested in this study. Microbial thermal adaptation modelling is based on a reported theory for thermal acclimation of plant and soil respiration. The climate is simulated from 1950 to 2099 for the tropical humid conditions of Guadeloupe (French Antilles), using the ARPEGE model and the IPCC emission scenario A1B. The model predicts increases of 3.4°C for air temperature and 1100mmyr−1 for rainfall as a response to an increase of 375ppm for atmospheric carbon dioxide concentration in the 2090–2099 decade compared with the 1950–1959 decade. The results of the STICS model indicate that the crop affects the response of SOM to climate change by controlling the change in several variables involved in C dynamics: C input, soil temperature and soil moisture. SOM content varies little until 2020, and then it decreases faster for maize than for banana. The decrease is weakened under the hypothesis of thermal adaptation, and this effect is greater for maize (−180kgCha−1yr−1 without adaptation and −140kgCha−1yr−1 with adaptation) than for banana (−60kgCha−1yr−1 and −40kgCha−1yr−1, respectively). The greater SOM loss in maize is mainly due to the negative effect of warming on maize growth decreasing C input from residues. Climate change has a small effect on banana growth, and SOM loss is linked to its effect on C mineralisation. For both crops, annual C mineralisation increases until 2040, and then it decreases continuously. Thermal adaptation reduces the initial increase in mineralisation, but its effect is lower on the final decrease, which is mainly controlled by substrate limitation. No stabilisation in SOM status is attained at the end of the analysed period because C mineralisation is always greater than C input. Model predictions indicate that microbial thermal adaptation modifies, but does not fundamentally change the temporal pattern of SOM dynamics. The vegetation type (C3 or C4) plays a major role in SOM dynamics in this tropical soil because of the different impact of climate change on crop growth and then on C inputs.

Suggested Citation

  • Sierra, J. & Brisson, N. & Ripoche, D. & Déqué, M., 2010. "Modelling the impact of thermal adaptation of soil microorganisms and crop system on the dynamics of organic matter in a tropical soil under a climate change scenario," Ecological Modelling, Elsevier, vol. 221(23), pages 2850-2858.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:23:p:2850-2858
    DOI: 10.1016/j.ecolmodel.2010.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010004266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Knorr & I. C. Prentice & J. I. House & E. A. Holland, 2005. "Long-term sensitivity of soil carbon turnover to warming," Nature, Nature, vol. 433(7023), pages 298-301, January.
    2. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blazy, Jean-Marc & Barlagne, Carla & Sierra, Jorge, 2015. "Environmental and economic impacts of agri-environmental schemes designed in French West Indies to enhance soil C sequestration and reduce pollution risks. A modelling approach," Agricultural Systems, Elsevier, vol. 140(C), pages 11-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    2. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    4. Alon Nissan & Uria Alcolombri & Nadav Peleg & Nir Galili & Joaquin Jimenez-Martinez & Peter Molnar & Markus Holzner, 2023. "Global warming accelerates soil heterotrophic respiration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xiaoying Bao & Xiaoxue Zhu & Xiaofeng Chang & Shiping Wang & Burenbayin Xu & Caiyun Luo & Zhenhua Zhang & Qi Wang & Yichao Rui & Xiaoying Cui, 2016. "Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
    6. Braakhekke, Maarten C. & Beer, Christian & Hoosbeek, Marcel R. & Reichstein, Markus & Kruijt, Bart & Schrumpf, Marion & Kabat, Pavel, 2011. "SOMPROF: A vertically explicit soil organic matter model," Ecological Modelling, Elsevier, vol. 222(10), pages 1712-1730.
    7. Hongru Sun & Guangsheng Zhou & Zhenzhu Xu & Yuhui Wang & Xiaodi Liu & Hongying Yu & Quanhui Ma & Bingrui Jia, 2020. "Temperature sensitivity increases with decreasing soil carbon quality in forest ecosystems across northeast China," Climatic Change, Springer, vol. 160(3), pages 373-384, June.
    8. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    9. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    10. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    11. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    12. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    14. Zeyang Zhao & Peng Dong & Bo Fu & Dan Wu & Zhizhong Zhao, 2024. "Labile Fraction of Organic Carbon in Soils from Natural and Plantation Forests of Tropical China," Sustainability, MDPI, vol. 16(17), pages 1-12, September.
    15. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    16. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    17. Raitis Normunds Meļņiks & Arta Bārdule & Aldis Butlers & Jordane Champion & Santa Kalēja & Ilona Skranda & Guna Petaja & Andis Lazdiņš, 2023. "Carbon Losses from Topsoil in Abandoned Peat Extraction Sites Due to Ground Subsidence and Erosion," Land, MDPI, vol. 12(12), pages 1-17, December.
    18. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    19. Husnain Husnain & I. Wigena & Ai Dariah & Setiari Marwanto & Prihasto Setyanto & Fahmuddin Agus, 2014. "CO 2 emissions from tropical drained peat in Sumatra, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 845-862, August.
    20. Nikolay Gorbach & Viktor Startsev & Anton Mazur & Evgeniy Milanovskiy & Anatoly Prokushkin & Alexey Dymov, 2022. "Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments," Sustainability, MDPI, vol. 14(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:23:p:2850-2858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.