IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i4p540-d788889.html
   My bibliography  Save this article

Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass ( Panicum virgatum ) Bioenergy Feedstock System

Author

Listed:
  • Chris B. Zou

    (Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078, USA)

  • Lixia H. Lambert

    (Department of Agricultural Economics, Oklahoma State University, Stillwater, OK 74078, USA)

  • Josh Everett

    (Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078, USA)

  • Rodney E. Will

    (Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078, USA)

Abstract

The land systems between the humid and arid zones around the globe are critical to agricultural production and are characterized by a strong integration of the land use and water dynamics. In the southern Great Plains (SGP) of the United States, lakes and farm ponds are essential components in the land systems, and they provide unique habitats for wildlife, and critical water resources for irrigation and municipal water supplies. The conversion of the marginal grasslands to switchgrass ( Panicum virgatum ) biofuel feedstock for energy production has been proposed in the region. However, we have limited experimental data to assess the impact of this potential land-use change on the surface runoff, which is the primary water source for surface impoundments. Here, we report the results from a paired experimental watershed study that compared the runoff and sediment responses that were related to the conversion of prairie to a low-input biomass production system. The results show no significant change in the relationship between the event-based runoff and the precipitation. There was a substantial increase in the sediment yield (328%) during the conversion phase that was associated with the switchgrass establishment (i.e., the site preparation, herbicide application, and switchgrass planting). Once the switchgrass was established, the sediment yield was 21% lower than the nonconverted watershed. Our site-specific observations suggest that switchgrass biofuel production systems will have a minimum impact on the existing land and water systems. It may potentially serve as an environmentally friendly and economically viable alternative land use for slowing woody encroachment on marginal lands in the SGP.

Suggested Citation

  • Chris B. Zou & Lixia H. Lambert & Josh Everett & Rodney E. Will, 2022. "Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass ( Panicum virgatum ) Bioenergy Feedstock System," Land, MDPI, vol. 11(4), pages 1-15, April.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:540-:d:788889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/4/540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/4/540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Sandstad Næss & Otavio Cavalett & Francesco Cherubini, 2021. "The land–energy–water nexus of global bioenergy potentials from abandoned cropland," Nature Sustainability, Nature, vol. 4(6), pages 525-536, June.
    2. Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2017. "Production and spatial distribution of switchgrass and miscanthus in the United States under uncertainty and sunk cost," Energy Economics, Elsevier, vol. 67(C), pages 300-314.
    3. Miao, Ruiqing & Khanna, Madhu, 2014. "Are Bioenergy Crops Riskier than Corn? Implications for Biomass Price," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 29(1), pages 1-6.
    4. Yohannes Tadesse Yimam & Tyson E Ochsner & Garey A Fox, 2017. "Hydrologic cost-effectiveness ratio favors switchgrass production on marginal croplands over existing grasslands," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-19, August.
    5. Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Jie Zhou & Yelong Zeng, 2020. "Mapping Land Use Land Cover Transitions at Different Spatiotemporal Scales in West Africa," Sustainability, MDPI, vol. 12(20), pages 1-52, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Blanc, Elena & Hudiburg, Tara & DeLucia, Evan, 2020. "Designing payments for GHG mitigation to induce low carbon bioenergy production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304394, Agricultural and Applied Economics Association.
    2. Madhu Khanna & Ruiqing Miao, 2022. "Inducing the adoption of emerging technologies for sustainable intensification of food and renewable energy production: insights from applied economics," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 1-23, January.
    3. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    4. Sarfo, Isaac & Qiao, Jiajun & Yeboah, Emmanuel & Puplampu, Dzifa Adimle & Kwang, Clement & Fynn, Iris Ekua Mensimah & Batame, Michael & Appea, Emmanuella Aboagye & Hagan, Daniel Fiifi Tawia & Ayelazun, 2024. "Meta-analysis of land use systems development in Africa: Trajectories, implications, adaptive capacity, and future dynamics," Land Use Policy, Elsevier, vol. 144(C).
    5. Hanson, Eilish R. & Nagler, Amy & Ritten, John & Rashford, Benjamin, 2022. "Farm-Level Economics of Bioenergy in the Upper Missouri River Basin," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2022.
    6. Mohit Anand & Ruiqing Miao & Madhu Khanna, 2019. "Adopting bioenergy crops: Does farmers’ attitude toward loss matter?," Agricultural Economics, International Association of Agricultural Economists, vol. 50(4), pages 435-450, July.
    7. Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Min Jiang & Jie Zhou & Yelong Zeng & Ali Bennour, 2021. "Modeling the Underlying Drivers of Natural Vegetation Occurrence in West Africa with Binary Logistic Regression Method," Sustainability, MDPI, vol. 13(9), pages 1-37, April.
    8. Skevas, Theodoros & Swinton, Scott M. & Tanner, Sophia & Sanford, Gregg & Thelen, Kurt, 2015. "Investment risk in bioenergy crops," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205440, Agricultural and Applied Economics Association.
    9. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    10. Dumortier, Jerome & Elobeid, Amani & Carriquiry, Miguel, 2022. "Light-duty vehicle fleet electrification in the United States and its effects on global agricultural markets," Ecological Economics, Elsevier, vol. 200(C).
    11. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Hoque, Mohammad Mainul & Artz, Georgeanne M. & Jarboe, Darren H. & Martens, Bobby J., 2015. "Producer Participation In Biomass Markets: Farm Factors, Market Factors, And Correlated Choices," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 47(3), pages 317-344, August.
    13. repec:ags:aaea22:335923 is not listed on IDEAS
    14. Ruiqing Miao & Madhu Khanna, 2017. "Effectiveness of the Biomass Crop Assistance Program: Roles of Behavioral Factors, Credit Constraint, and Program Design," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(4), pages 584-608.
    15. Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Le Yu & Emmanuel Kwesi Nyantakyi & Amos Tiereyangn Kabo-Bah & Min Jiang & Jie Zhou & Yunzhe Lv & Yelong Zeng & Ali Bennour, 2023. "Spatiotemporal Patterns in Land Use/Land Cover Observed by Fusion of Multi-Source Fine-Resolution Data in West Africa," Land, MDPI, vol. 12(5), pages 1-35, May.
    16. Jacqueline Ninson & Irene S. Egyir & Akwasi Mensah-Bonsu & Edward Ebo Onumah, 2022. "Financial Analysis of the Use of Land: Agriculture or Woodlot," Land, MDPI, vol. 11(5), pages 1-15, April.
    17. Jingmeng Wang & Wei Li & Philippe Ciais & Laurent Z. X. Li & Jinfeng Chang & Daniel Goll & Thomas Gasser & Xiaomeng Huang & Narayanappa Devaraju & Olivier Boucher, 2021. "Global cooling induced by biophysical effects of bioenergy crop cultivation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Jamila Ngondo & Joseph Mango & Ruiqing Liu & Joel Nobert & Alfonse Dubi & Heqin Cheng, 2021. "Land-Use and Land-Cover (LULC) Change Detection and the Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    19. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    20. Sharma, Bijay P. & Khanna, Madhu & Miao, Ruiqing, 2022. "Designing Efficient Payments to Incentivize GHG Mitigation Using Energy Crops," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322361, Agricultural and Applied Economics Association.
    21. Burli, Pralhad & Lal, Pankaj & Wolde, Bernabas & Jose, Shibu & Bardhan, Sougata, 2019. "Factors affecting willingness to cultivate switchgrass: Evidence from a farmer survey in Missouri," Energy Economics, Elsevier, vol. 80(C), pages 20-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:540-:d:788889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.