IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i5p446-d541425.html
   My bibliography  Save this article

Assessing the Impacts of Rural Development Plan Measures on the Sustainability of Agricultural Holdings Using a PMP Model

Author

Listed:
  • Christina Moulogianni

    (Department of Agricultural Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Thomas Bournaris

    (Department of Agricultural Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Rural Development Plan (RDP) measures support farmers in improving the sustainability of their agricultural holdings. The implementation of these policies has economic, social, and environmental impacts, which are monitored either ex-ante, ongoing, or ex-post, as required from the European Commission impact assessment guidelines. In this frame, this paper aims to assess the impacts of RDP measures on the sustainability of agricultural holdings. For this reason, a positive mathematical programming (PMP) model was developed and implemented in combination with a set of economic, social, and environmental indicators. The model was used to assess the ex-post impacts of the measure titled ‘Modernization of agricultural holdings’ of the Greek RDP 2007–2013. This research was conducted on a sample of 219 agricultural holdings in a region of northern Greece. The impacts were measured through the changes of the crop plan in the agricultural land. The results show that the measure has positive economic impacts, negative social impacts, and negative impacts on most of the environmental indicators. The results also underline the significant role of the impact assessment process in supporting policymakers in understanding the impacts of their policies.

Suggested Citation

  • Christina Moulogianni & Thomas Bournaris, 2021. "Assessing the Impacts of Rural Development Plan Measures on the Sustainability of Agricultural Holdings Using a PMP Model," Land, MDPI, vol. 10(5), pages 1-13, April.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:446-:d:541425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/5/446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/5/446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hermann Lotze-Campen, 2008. "The role of modelling tools in Integrated Sustainability Assessment (ISA)," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 3(1/2), pages 70-92.
    2. Nastis, Stefanos A. & Michailidis, Anastasios & Mattas, Konstadinos, 2011. "Crop biodiversity repercussions of subsidized organic farming in Greece," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114628, European Association of Agricultural Economists.
    3. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(1), pages 27-50, March.
    4. Basil Manos & Thomas Bournaris & Mohd Kamruzzaman & Moss Begum & Ara Anjuman & Jason Papathanasiou, 2006. "Regional Impact of Irrigation Water Pricing in Greece under Alternative Scenarios of European Policy: A Multicriteria Analysis," Regional Studies, Taylor & Francis Journals, vol. 40(9), pages 1055-1068.
    5. Argyris Kanellopoulos & Paul Berentsen & Thomas Heckelei & Martin Van Ittersum & Alfons Oude Lansink, 2010. "Assessing the Forecasting Performance of a Generic Bio‐Economic Farm Model Calibrated With Two Different PMP Variants," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 274-294, June.
    6. Ottmar Röhm & Stephan Dabbert, 2003. "Integrating Agri-Environmental Programs into Regional Production Models: An Extension of Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 254-265.
    7. Joan Pujol & Meri Raggi & Davide Viaggi, 2006. "The potential impact of markets for irrigation water in Italy and Spain: a comparison of two study areas ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 361-380, September.
    8. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    9. J. A. Finn & F. Bartolini & D. Bourke & I. Kurz & D. Viaggi, 2009. "Ex post environmental evaluation of agri-environment schemes using experts' judgements and multicriteria analysis," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 52(5), pages 717-737.
    10. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2010. "An integer programming dynamic farm-household model to evaluate the impact of agricultural policy reforms on farm investment behaviour," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1130-1139, December.
    11. Belhouchette, Hatem & Louhichi, Kamel & Therond, Olivier & Mouratiadou, Ioanna & Wery, Jacques & Ittersum, Martin van & Flichman, Guillermo, 2011. "Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modelling chain," Agricultural Systems, Elsevier, vol. 104(2), pages 135-145, February.
    12. Iglesias, Eva & Garrido, Alberto & Gomez-Ramos, Almudena, 2003. "Evaluation of drought management in irrigated areas," Agricultural Economics, Blackwell, vol. 29(2), pages 211-229, October.
    13. Basil Manos & Thomas Bournaris & Christina Moulogianni & Fedra Kiomourtzi, 2017. "Assessment of rural development plan measures in Greece," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 28(4), pages 448-471.
    14. Bartolini, F. & Bazzani, G.M. & Gallerani, V. & Raggi, M. & Viaggi, D., 2007. "The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models," Agricultural Systems, Elsevier, vol. 93(1-3), pages 90-114, March.
    15. Christina Moulogianni & Thomas Bournaris, 2017. "Biomass Production from Crops Residues: Ranking of Agro-Energy Regions," Energies, MDPI, vol. 10(7), pages 1-12, July.
    16. Gomez-Limon, J. A. & Berbel, J., 2000. "Multicriteria analysis of derived water demand functions: a Spanish case study," Agricultural Systems, Elsevier, vol. 63(1), pages 49-72, January.
    17. Gómez-Limón, José A. & Sanchez-Fernandez, Gabriela, 2010. "Empirical evaluation of agricultural sustainability using composite indicators," Ecological Economics, Elsevier, vol. 69(5), pages 1062-1075, March.
    18. Brigite Botequim & Miguel N. Bugalho & Ana Raquel Rodrigues & Susete Marques & Marco Marto & José G. Borges, 2021. "Combining Tree Species Composition and Understory Coverage Indicators with Optimization Techniques to Address Concerns with Landscape-Level Biodiversity," Land, MDPI, vol. 10(2), pages 1-26, January.
    19. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    20. Richard E. Howitt, 1995. "A Calibration Method For Agricultural Economic Production Models," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(2), pages 147-159, May.
    21. Måns Nilsson & Andrew Jordan & John Turnpenny & Julia Hertin & Björn Nykvist & Duncan Russel, 2008. "The use and non-use of policy appraisal tools in public policy making: an analysis of three European countries and the European Union," Policy Sciences, Springer;Society of Policy Sciences, vol. 41(4), pages 335-355, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina Moulogianni, 2022. "Comparison of Selected Mathematical Programming Models Used for Sustainable Land and Farm Management," Land, MDPI, vol. 11(8), pages 1-18, August.
    2. Syed Shurid Khan & Shawn Arita & Richard Howitt & PingSun Leung, 2022. "Evaluating change in property tax regime on noncommercial food production using a modified positive mathematical programming model," SN Business & Economics, Springer, vol. 2(9), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Moulogianni, 2022. "Comparison of Selected Mathematical Programming Models Used for Sustainable Land and Farm Management," Land, MDPI, vol. 11(8), pages 1-18, August.
    2. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.
    3. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    4. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    5. Mugurel Ionel JITEA & Diana Elena DUMITRAȘ & Vasile Alexandru SIMU, 2015. "An ex-ante impact assessment of the Common Agricultural Policy reform in the North-Western Romania," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(2), pages 88-103.
    6. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    7. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    8. Cortignani, Raffaele & Severini, Simone, 2009. "Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming," Agricultural Water Management, Elsevier, vol. 96(12), pages 1785-1791, December.
    9. Donati, Michele & Bodini, Diego & Arfini, Filippo & Zezza, Annalisa, 2013. "An integrated PMP model to assess the development of agro-energy crops and the effect on water requirements," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 2(3), pages 1-21, December.
    10. Arfini, Filippo & Donati, Michele & Marongiu, Sonia & Cesaro, Luca, 2012. "Farm production costs estimation trough PMP Models: an application in three Italian Regions," 2012 First Congress, June 4-5, 2012, Trento, Italy 124117, Italian Association of Agricultural and Applied Economics (AIEAA).
    11. Severini, Simone & Cortignani, Raffaele, 2008. "Introducing deficit irrigation crop techniques derived by crop growth models into a Positive Mathematical Programming model," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44010, European Association of Agricultural Economists.
    12. Louhichi, Kamel & Kanellopoulos, Argyris & Janssen, Sander & Flichman, Guillermo & Blanco, Maria & Hengsdijk, Huib & Heckelei, Thomas & Berentsen, Paul & Lansink, Alfons Oude & Ittersum, Martin Van, 2010. "FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies," Agricultural Systems, Elsevier, vol. 103(8), pages 585-597, October.
    13. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    14. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    15. Carpentier, Alain & Letort, Elodie, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers 211011, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    16. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    17. Chebil, A. & Frija, A. & Thabet, C., 2012. "Irrigation water pricing between governmental policies and farmers’ perception: Implications for green-houses horticultural production in Teboulba (Tunisia)," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(2), pages 1-11.
    18. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    19. Britz, Wolfgang & Ciaian, Pavel & Gocht, Alexander & Kanellopoulos, Argyris & Kremmydas, Dimitrios & Müller, Marc & Petsakos, Athanasios & Reidsma, Pytrik, 2021. "A design for a generic and modular bio-economic farm model," Agricultural Systems, Elsevier, vol. 191(C).
    20. Houcine Jeder & Mongi Sghaier & Kamel Louhichi & Pytrik Reidsma, 2014. "Bio-economic modelling to assess the impact of water pricing policies at the farm level in the Oum Zessar watershed, southern Tunisia [Modélisation bio-économique des politiques de tarification de ," Post-Print hal-04645966, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:446-:d:541425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.