IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i9p1099-1110.html
   My bibliography  Save this article

Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-Wheat model

Author

Listed:
  • Timsina, J.
  • Godwin, D.
  • Humphreys, E.
  • Yadvinder-Singh
  • Bijay-Singh
  • Kukal, S.S.
  • Smith, D.

Abstract

The DSSAT-CSM-CERES-Wheat V4.0 model was calibrated for yield and irrigation scheduling of wheat with 2004-2005 data and validated with 13 independent data sets from experiments conducted during 2002-2006 at the Punjab Agricultural University (PAU) farm, Ludhiana, and in a farmer's field near PAU at Phillaur, Punjab, India. Subsequently, the validated model was used to estimate long-term mean and variability of potential yield (Yp), drainage, runoff, evapo-transpiration (ET), crop water productivity (CWP), and irrigation water productivity (IWP) of wheat cv. PBW343 using 36 years (1970-1971 to 2005-2006) of historical weather data from Ludhiana. Seven sowing dates in fortnightly intervals, ranging from early October to early January, and three irrigation scheduling methods [soil water deficit (SWD)-based, growth stage-based, and ET-based] were evaluated. For the SWD-based scheduling, irrigation management depth was set to 75 cm with irrigation scheduled when SWD reached 50% to replace 100% of the deficit. For growth stage-based scheduling, irrigation was applied either only once at one of the key growth stages [crown root initiation (CRI), booting, flowering, and grain filling], twice (two stages in various combinations), thrice (three stages in various combinations), or four times (all four stages). For ET-driven irrigation, irrigations were scheduled based on cumulative net ETo (ETo-rain) since the previous irrigation, for a range of net ETo (25, 75, 125, 150, and 175 mm). Five main irrigation schedules (SWD-based, ET-driven with irrigation applied after accumulation of either 75 or 125 mm of ETo, i.e., ET75 or ET125, and growth stage-based with irrigation applied at CRI plus booting, or at CRI plus booting plus flowering stage) were chosen for detailed analysis of yield, water balance, and CWP and IWP. Nitrogen was non-limiting in all the simulations. Mean Yp across 36 years ranged from 5.2 t ha-1 (10 October sowing) to 6.4 t ha-1 (10 November sowing), with yield variations due to seasonal weather greater than variations across sowing dates. Yields under different irrigation scheduling, CWP and IWP were highest for 10 November sowing. Yields and CWP were higher for SWD and ET75-based irrigations on both soils, but IWP was higher for ET75-based irrigation on sandy loam and for ET150-based irrigation on loam. Simulation results suggest that yields, CWP, and IWP of PBW343 would be highest for sowing between late October and mid-November in the Indian Punjab. It is recommended that sowing be done within this planting period and that irrigation be applied based on the atmospheric demand and soil water status and not on the growth stage. Despite the potential limitations recognised with simulation results, we can conclude that DSSAT-CSM-CERES-Wheat V4.0 is a useful decision support system to help farmers to optimally schedule and manage irrigation in wheat grown in coarse-textured soils under declining groundwater table situations of the Indian Punjab. Further, the validated model and the simulation results can also be extrapolated to other areas with similar climatic and soil environments in Asia where crop, soil, weather, and management data are available.

Suggested Citation

  • Timsina, J. & Godwin, D. & Humphreys, E. & Yadvinder-Singh & Bijay-Singh & Kukal, S.S. & Smith, D., 2008. "Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 95(9), pages 1099-1110, September.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:9:p:1099-1110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00106-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arora, V.K. & Singh, Harbakhshinder & Singh, Bijay, 2007. "Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 22-30, December.
    2. Timsina, J. & Humphreys, E., 2006. "Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review," Agricultural Systems, Elsevier, vol. 90(1-3), pages 5-31, October.
    3. Jalota, S. K. & Prihar, S. S. & Sandhu, B. S. & Khera, K. L., 1980. "Yield, water use and root distribution of wheat as affected by pre-sowing and post-sowing irrigation," Agricultural Water Management, Elsevier, vol. 2(4), pages 289-297, March.
    4. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    5. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    6. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    7. Jalota, S. K. & Arora, V. K., 2002. "Model-based assessment of water balance components under different cropping systems in north-west India," Agricultural Water Management, Elsevier, vol. 57(1), pages 75-87, September.
    8. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G.S., Kaushika & Arora, Himanshu & K.S., Hari Prasad, 2019. "Analysis of climate change effects on crop water availability for paddy, wheat and berseem," Agricultural Water Management, Elsevier, vol. 225(C).
    2. Kothari, Kritika & Ale, Srinivasulu & Bordovsky, James P. & Thorp, Kelly R. & Porter, Dana O. & Munster, Clyde L., 2019. "Simulation of efficient irrigation management strategies for grain sorghum production over different climate variability classes," Agricultural Systems, Elsevier, vol. 170(C), pages 49-62.
    3. Saggi, Mandeep Kaur & Jain, Sushma, 2020. "Application of fuzzy-genetic and regularization random forest (FG-RRF): Estimation of crop evapotranspiration (ETc) for maize and wheat crops," Agricultural Water Management, Elsevier, vol. 229(C).
    4. Paresh B. Shirsath & Vinay Kumar Sehgal & Pramod K. Aggarwal, 2020. "Downscaling Regional Crop Yields to Local Scale Using Remote Sensing," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    5. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Malone, Sparkle L. & Alam, Md. Khairul & Loescher, Henry W. & Bazzaz, Mahfuz, 2020. "Alternate furrow irrigation can maintain grain yield and nutrient content, and increase crop water productivity in dry season maize in sub-tropical climate of South Asia," Agricultural Water Management, Elsevier, vol. 238(C).
    6. Ding, Jinli & Hu, Wei & Wu, Jicheng & Yang, Yonghui & Feng, Hao, 2020. "Simulating the effects of conventional versus conservation tillage on soil water, nitrogen dynamics, and yield of winter wheat with RZWQM2," Agricultural Water Management, Elsevier, vol. 230(C).
    7. Jiang, Tengcong & Wang, Bin & Duan, Xiaoning & Liu, De Li & He, Jianqiang & He, Liang & Jin, Ning & Feng, Hao & Yu, Qiang, 2023. "Prioritizing agronomic practices and uncertainty assessment under climate change for winter wheat in the loess plateau, China," Agricultural Systems, Elsevier, vol. 212(C).
    8. Kadiyala, M.D.M. & Jones, J.W. & Mylavarapu, R.S. & Li, Y.C. & Reddy, M.D., 2015. "Identifying irrigation and nitrogen best management practices for aerobic rice–maize cropping system for semi-arid tropics using CERES-rice and maize models," Agricultural Water Management, Elsevier, vol. 149(C), pages 23-32.
    9. Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Nair, Shyam & Ibrahim, Amir & Hays, Dirk, 2016. "Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 165(C), pages 50-60.
    10. Mahajan, G. & Bharaj, T.S. & Timsina, J., 2009. "Yield and water productivity of rice as affected by time of transplanting in Punjab, India," Agricultural Water Management, Elsevier, vol. 96(3), pages 525-532, March.
    11. Vashisht, B.B. & Jalota, S.K. & Ramteke, P. & Kaur, Ramandeep & Jayeswal, D.K., 2021. "Impact of rice (O. sativa L.) straw incorporation induced changes in soil physical and chemical properties on yield, water and nitrogen–balance and –use efficiency of wheat (T. aestivum L.) in rice–wh," Agricultural Systems, Elsevier, vol. 194(C).
    12. Jalota, S.K. & Jain, A.K. & Vashisht, B.B., 2018. "Minimize water deficit in wheat crop to ameliorate groundwater decline in rice-wheat cropping system," Agricultural Water Management, Elsevier, vol. 208(C), pages 261-267.
    13. Devkota, Mina & Devkota, Krishna Prasad & Kumar, Shiv, 2022. "Conservation agriculture improves agronomic, economic, and soil fertility indicators for a clay soil in a rainfed Mediterranean climate in Morocco," Agricultural Systems, Elsevier, vol. 201(C).
    14. Araya, A. & Kisekka, Isaya & Gowda, Prasanna H. & Prasad, P.V. Vara, 2017. "Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM," Agricultural Systems, Elsevier, vol. 150(C), pages 86-98.
    15. Meena, Raj Pal & Karnam, Venkatesh & Tripathi, S.C. & Jha, Ankita & Sharma, R.K. & Singh, G.P., 2019. "Irrigation management strategies in wheat for efficient water use in the regions of depleting water resources," Agricultural Water Management, Elsevier, vol. 214(C), pages 38-46.
    16. Anshuman Gunawat & Devesh Sharma & Aditya Sharma & Swatantra Kumar Dubey, 2022. "Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2077-2096, March.
    17. Geerts, S. & Raes, D. & Garcia, M. & Taboada, C. & Miranda, R. & Cusicanqui, J. & Mhizha, T. & Vacher, J., 2009. "Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano," Agricultural Water Management, Elsevier, vol. 96(11), pages 1652-1658, November.
    18. Chunlei Wang & Liping Feng & Lu Wu & Chen Cheng & Yizhuo Li & Jintao Yan & Jiachen Gao & Fu Chen, 2020. "Assessment of Genotypes and Management Strategies to Improve Resilience of Winter Wheat Production," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    19. Si, Zhuanyun & Zain, Muhammad & Li, Shuang & Liu, Junming & Liang, Yueping & Gao, Yang & Duan, Aiwang, 2021. "Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    2. Wesseling, J.G. & Feddes, R.A., 2006. "Assessing crop water productivity from field to regional scale," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 30-39, November.
    3. Jalota, S.K. & Sood, Anil & Chahal, G.B.S. & Choudhury, B.U., 2006. "Crop water productivity of cotton (Gossypium hirsutum L.)-wheat (Triticum aestivum L.) system as influenced by deficit irrigation, soil texture and precipitation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 137-146, July.
    4. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    5. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," Book Chapters,, International Water Management Institute.
    6. Bluemling, Bettina & Yang, Hong & Pahl-Wostl, Claudia, 2007. "Making water productivity operational--A concept of agricultural water productivity exemplified at a wheat-maize cropping pattern in the North China plain," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 11-23, July.
    7. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," IWMI Books, Reports H042640, International Water Management Institute.
    8. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    9. Vazifedoust, M. & van Dam, J.C. & Feddes, R.A. & Feizi, M., 2008. "Increasing water productivity of irrigated crops under limited water supply at field scale," Agricultural Water Management, Elsevier, vol. 95(2), pages 89-102, February.
    10. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    11. Zwart, Sander J. & Bastiaanssen, Wim G.M., 2007. "SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems," Agricultural Water Management, Elsevier, vol. 89(3), pages 287-296, May.
    12. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    13. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    14. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    15. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    16. Kumar, M. Dinesh & Amarasinghe, Upali A., 2009. "Strategic Analyses of the National River Linking Project (NRLP) of India, Series 4. Water productivity improvements in Indian agriculture: potentials, constraints and prospects," IWMI Books, Reports H042633, International Water Management Institute.
    17. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    18. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    19. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    20. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:9:p:1099-1110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.