IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1208-d674359.html
   My bibliography  Save this article

Changes in the Country and Their Impact on Topographic Data of Agricultural Land—A Case Study of Slovakia

Author

Listed:
  • Zofia Kuzevicova

    (Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Technical University of Kosice, Letna, 9, 042 00 Kosice, Slovakia)

  • Diana Bobikova

    (Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Technical University of Kosice, Letna, 9, 042 00 Kosice, Slovakia)

  • Stefan Kuzevic

    (Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Earth Resources, Technical University of Kosice, Letna, 9, 042 00 Kosice, Slovakia)

  • Samer Khouri

    (Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Earth Resources, Technical University of Kosice, Letna, 9, 042 00 Kosice, Slovakia)

Abstract

Due to natural phenomena as well as human activities, changes are occurring in land use. Techniques and environment GIS have made it possible to process large amounts of data from various sources. In Slovakia, mapping of topography and elevation is being carried out as part of the elaboration of land readjustment projects. This is also a starting point for updating estimated pedologic-ecological units (EPEUs). Therefore, it is necessary to make efforts to harmonize the real state of the country with the data stored in the EPEU database, which are the basis for spatial analyses in the country and the creation of price maps. The EPEU system was built in the 1970s; however, only after 1990, due to changes in ownership and user conditions of the land, did it begin to seriously address the issue of updating data. This study examines selected sources of altimetry data, especially airborne laser scanning (ALS), and their potential role in processing purpose maps and harmonizing boundary curves and slope and exposure characteristics at a stable 5-position EPEU local code. Based on the obtained results, the use of ALS data and the Digital Terrain Model (DTM) derived from them may lead to the streamlining of some processes in terms of planning and decision-making regarding land use, even outside the context of the ongoing land reforms in the Slovak Republic.

Suggested Citation

  • Zofia Kuzevicova & Diana Bobikova & Stefan Kuzevic & Samer Khouri, 2021. "Changes in the Country and Their Impact on Topographic Data of Agricultural Land—A Case Study of Slovakia," Land, MDPI, vol. 10(11), pages 1-22, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1208-:d:674359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alemayehu Midekisa & Felix Holl & David J Savory & Ricardo Andrade-Pacheco & Peter W Gething & Adam Bennett & Hugh J W Sturrock, 2017. "Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    2. Janus, Jarosław & Ertunç, Ela, 2021. "Differences in the effectiveness of land consolidation projects in various countries and their causes: Examples of Poland and Turkey," Land Use Policy, Elsevier, vol. 108(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Przemysław Leń & Klaudia Maciąg & Michał Maciąg & Justyna Wójcik-Leń & Katarzyna Kocur-Bera, 2023. "Proposed Algorithm for the Optimisation of the Process of Generating the Geometry of Land Use/Soil Valuation Classes for Land Consolidation," Sustainability, MDPI, vol. 15(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Aja & Michael K. Miyittah & Donatus Bapentire Angnuureng, 2022. "Quantifying Mangrove Extent Using a Combination of Optical and Radar Images in a Wetland Complex, Western Region, Ghana," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    2. Sarfo, Isaac & Qiao, Jiajun & Yeboah, Emmanuel & Puplampu, Dzifa Adimle & Kwang, Clement & Fynn, Iris Ekua Mensimah & Batame, Michael & Appea, Emmanuella Aboagye & Hagan, Daniel Fiifi Tawia & Ayelazun, 2024. "Meta-analysis of land use systems development in Africa: Trajectories, implications, adaptive capacity, and future dynamics," Land Use Policy, Elsevier, vol. 144(C).
    3. Minjuan Lv & Zhiting Chen & Lingling Yao & Xiaohu Dang & Peng Li & Xiaoshu Cao, 2022. "Potential Zoning of Construction Land Consolidation in the Loess Plateau Based on the Evolution of Human–Land Relationship," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    4. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    5. Lopes, Catarina & Leite, Ana & Vasconcelos, Maria José, 2019. "Open-access cloud resources contribute to mainstream REDD+: The case of Mozambique," Land Use Policy, Elsevier, vol. 82(C), pages 48-60.
    6. Wang, Ge & Li, Xiaoqiu & Gao, Yingjie & Zeng, Chen & Wang, Bingkun & Li, Xiangyu & Li, Xintong, 2023. "How does land consolidation drive rural industrial development? Qualitative and quantitative analysis of 32 land consolidation cases in China," Land Use Policy, Elsevier, vol. 130(C).
    7. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    8. Wubeshet Damtea & Dongyeob Kim & Sangjun Im, 2020. "Spatiotemporal Analysis of Land Cover Changes in the Chemoga Basin, Ethiopia, Using Landsat and Google Earth Images," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
    9. Kotapati Narayana Loukika & Venkata Reddy Keesara & Venkataramana Sridhar, 2021. "Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    10. Goran Marinković & Zoran Ilić & Milan Trifković & Jelena Tatalović & Marko Božić, 2022. "Optimization Methods as a Base for Decision Making in Land Consolidation Projects Ranking," Land, MDPI, vol. 11(9), pages 1-12, September.
    11. Ertunç, Ela & Uyan, Mevlut, 2022. "Land valuation with Best Worst Method in land consolidation projects," Land Use Policy, Elsevier, vol. 122(C).
    12. Li, Hanbing & Jin, Xiaobin & McCormick, Barbara Prack & Tittonell, Pablo & Liu, Jing & Han, Bo & Sun, Rui & Zhou, Yinkang, 2023. "Analysis of the contribution of land consolidation to sustainable poverty alleviation under various natural conditions," Land Use Policy, Elsevier, vol. 133(C).
    13. Ricardo Andrade-Pacheco & David J Savory & Alemayehu Midekisa & Peter W Gething & Hugh J W Sturrock & Adam Bennett, 2019. "Household electricity access in Africa (2000–2013): Closing information gaps with model-based geostatistics," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-14, May.
    14. Pankaj Bajracharya & Selima Sultana, 2020. "Rank-size Distribution of Cities and Municipalities in Bangladesh," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    15. Wakjira Takala Dibaba & Tamene Adugna Demissie & Konrad Miegel, 2020. "Drivers and Implications of Land Use/Land Cover Dynamics in Finchaa Catchment, Northwestern Ethiopia," Land, MDPI, vol. 9(4), pages 1-20, April.
    16. Jian Zhou & Chao Li & Xiaotong Chu & Chenying Luo, 2022. "Is Cultivated Land Increased by Land Consolidation Sustainably Used in Mountainous Areas?," Land, MDPI, vol. 11(12), pages 1-14, December.
    17. Motuma Shiferaw Regasa & Michael Nones & Dereje Adeba, 2021. "A Review on Land Use and Land Cover Change in Ethiopian Basins," Land, MDPI, vol. 10(6), pages 1-18, June.
    18. Yaoben Lin & Danling Chen, 2022. "Functional Zoning and Path Selection of Land Comprehensive Consolidation Based on Grey Constellation Clustering: A Case Study of Dongying City, China," IJERPH, MDPI, vol. 19(11), pages 1-16, May.
    19. Miaomiao Ma & Youfeng Zou & Wenzhi Zhang & Chunhui Chen, 2022. "Landscape Pattern Consistency Assessment of 10 m Land Cover Products in Different Ecological Zoning Contexts of Sichuan Province, China," Sustainability, MDPI, vol. 14(24), pages 1-18, December.

    More about this item

    Keywords

    land policy; ALS; GIS; slope; exposure;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1208-:d:674359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.