IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1124-d662927.html
   My bibliography  Save this article

Landscape Fragmentation in Qinling–Daba Mountains Nature Reserves and Its Influencing Factors

Author

Listed:
  • Yingzhuo Zhang

    (Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
    College of Geography and Environmental Science, Henan University, Kaifeng 475004, China)

  • Haoran Yin

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China)

  • Lianqi Zhu

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China)

  • Changhong Miao

    (Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
    College of Geography and Environmental Science, Henan University, Kaifeng 475004, China)

Abstract

Climate change and intensified human activity have altered the landscape pattern of nature reserves and are expected to induce persistent changes in habitat quality. Using GIS technology and landscape ecological theories, we quantitatively analyzed landscape fragmentation characteristics and the driving factors for the interior and peripheries of the Qinling–Daba Mountains nature reserves during 2010–2017. Using spatial principal component analysis, landscape pattern indices, and Geodetector, we evaluated the habitat quality status of different nature reserve types in different regions and the impacts of human disturbance on these areas. The results are as follows: (1) Most national nature reserves in the Qinling–Daba Mountains were moderately or highly fragmented during 2010–2017, and the fragmentation degree of a few reserves exhibited a decreasing trend. (2) The fragmentation degree of landscape patches from the core areas to the experimental areas of the inner nature reserves showed a trend of being low in the middle and high in the surrounding area; the level of landscape fragmentation gradually decreased from the edge of 1 km (M-1) to 5 km (M-5). (3) There was spatial differentiation in the intensity of landscape fragmentation among the nature reserves; human activity intensity, land-use degree, elevation, slope gradient, and topographic relief were the factors influencing the spatial differentiation of landscape fragmentation, and the contribution of anthropogenic factors was significantly greater than that of natural factors. Human activities, such as the construction of network infrastructures, irrational partition management, expansion of agricultural and industrial production activities, were the main reasons for the spatial differentiation of landscape fragmentation in the nature reserves. These results can provide significant scientific support for ecological restoration in the nature reserves and contribute to the coordinated development between socio-economic system and ecological environment in the exceedingly impoverished areas.

Suggested Citation

  • Yingzhuo Zhang & Haoran Yin & Lianqi Zhu & Changhong Miao, 2021. "Landscape Fragmentation in Qinling–Daba Mountains Nature Reserves and Its Influencing Factors," Land, MDPI, vol. 10(11), pages 1-20, October.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1124-:d:662927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moreira, Miguel & Fonseca, Catarina & Vergílio, Marta & Calado, Helena & Gil, Artur, 2018. "Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: a case study of Pico Island (Azores, Portugal)," Land Use Policy, Elsevier, vol. 78(C), pages 637-649.
    2. M. Pfeifer & V. Lefebvre & C. A. Peres & C. Banks-Leite & O. R. Wearn & C. J. Marsh & S. H. M. Butchart & V. Arroyo-Rodríguez & J. Barlow & A. Cerezo & L. Cisneros & N. D’Cruze & D. Faria & A. Hadley , 2017. "Creation of forest edges has a global impact on forest vertebrates," Nature, Nature, vol. 551(7679), pages 187-191, November.
    3. Jos Barlow & Gareth D. Lennox & Joice Ferreira & Erika Berenguer & Alexander C. Lees & Ralph Mac Nally & James R. Thomson & Silvio Frosini de Barros Ferraz & Julio Louzada & Victor Hugo Fonseca Olivei, 2016. "Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation," Nature, Nature, vol. 535(7610), pages 144-147, July.
    4. James E. M. Watson & Nigel Dudley & Daniel B. Segan & Marc Hockings, 2014. "The performance and potential of protected areas," Nature, Nature, vol. 515(7525), pages 67-73, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiliang Liu & Yingying Chen & Rongjie Yang & Di Li & Yuling Qiu & Kezhu Lu & Xinhao Cao & Qibing Chen, 2024. "Spatiotemporal Dynamics of Constructed Wetland Landscape Patterns during Rapid Urbanization in Chengdu, China," Land, MDPI, vol. 13(6), pages 1-26, June.
    2. Yifang Wang & Linlin Cheng & Yang Zheng, 2023. "An Adjusted Landscape Ecological Security of Cultivated Land Evaluation Method Based on the Interaction between Cultivated Land and Surrounding Land Types," Land, MDPI, vol. 12(4), pages 1-20, April.
    3. Yi Deng & Ziyi Mao & Jinling Huang & Faling Yan & Shenghai Han & Anqi Li, 2022. "Spatial Patterns of Natural Protected Areas and Construction of Protected Area Groups in Guangdong Province," IJERPH, MDPI, vol. 19(22), pages 1-25, November.
    4. Jan K. Kazak & Katarzyna Hodor & Magdalena Wilkosz-Mamcarczyk, 2022. "Climate Change and Current Challenges for Landscapes and Cultural Heritage," Land, MDPI, vol. 11(12), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Ma & Jiawei Li & Wanben Wu & Jiajia Liu, 2023. "Global forest fragmentation change from 2000 to 2020," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    4. Ming-Kuang Chung & Dau-Jye Lu & Bor-Wen Tsai & Kuei-Tien Chou, 2019. "Assessing Effectiveness of PPGIS on Protected Areas by Governance Quality: A Case Study of Community-Based Monitoring in Wu-Wei-Kang Wildlife Refuge, Taiwan," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    5. Tingting Zhang & Dan He & Tian Kuang & Ke Chen, 2022. "Effect of Rural Human Settlement Environment around Nature Reserves on Farmers’ Well-Being: A Field Survey Based on 1002 Farmer Households around Six Nature Reserves in China," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    6. Thomas Campagnaro & Giovanni Trentanovi & Tommaso Sitzia, 2018. "Identifying Habitat Type Conservation Priorities under the Habitats Directive: Application to Two Italian Biogeographical Regions," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    7. Susan C. Cook-Patton & C. Ronnie Drever & Bronson W. Griscom & Kelley Hamrick & Hamilton Hardman & Timm Kroeger & Pablo Pacheco & Shyla Raghav & Martha Stevenson & Chris Webb & Samantha Yeo & Peter W., 2021. "Protect, manage and then restore lands for climate mitigation," Nature Climate Change, Nature, vol. 11(12), pages 1027-1034, December.
    8. Gregor Schwerhoff & Ottmar Edenhofer & Marc Fleurbaey, 2020. "Taxation Of Economic Rents," Journal of Economic Surveys, Wiley Blackwell, vol. 34(2), pages 398-423, April.
    9. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    10. Adam Pawlewicz & Wojciech Gotkiewicz & Katarzyna Brodzińska & Katarzyna Pawlewicz & Bartosz Mickiewicz & Paweł Kluczek, 2022. "Organic Farming as an Alternative Maintenance Strategy in the Opinion of Farmers from Natura 2000 Areas," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    11. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    12. Sirakov, Nikolay & Fontez, Bénédicte & Libourel, Thérèse & dos Santos, Alessio & Mitja, Danielle & Loisel, Patrice, 2019. "A stage-structured hierarchical Bayes model for the babassu palm tree population dynamics – Estimated from anthropogenic open area data sets," Ecological Modelling, Elsevier, vol. 400(C), pages 14-26.
    13. Rachel Nichols & Satoshi Yamazaki & Sarah Jennings, 2021. "How did a network of marine protected areas impact adjacent fisheries? Evidence from Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 119-142, January.
    14. Javed Iqbal, 2021. "Impact of silvicultural system on natural regeneration in Western Himalayan moist temperate forests of Pakistan," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(3), pages 101-112.
    15. Li, Shicheng & Zhang, Heng & Zhou, Xuewu & Yu, Haibin & Li, Wangjun, 2020. "Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau," Ecosystem Services, Elsevier, vol. 43(C).
    16. Patricio Sarmiento-Mateos & Cecilia Arnaiz-Schmitz & Cristina Herrero-Jáuregui & Francisco D. Pineda & María F. Schmitz, 2019. "Designing Protected Areas for Social–Ecological Sustainability: Effectiveness of Management Guidelines for Preserving Cultural Landscapes," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    17. Conceição, Katyanne V. & Chaves, Michel E.D. & Picoli, Michelle C.A. & Sánchez, Alber H. & Soares, Anderson R. & Mataveli, Guilherme A.V. & Silva, Daniel E. & Costa, Joelma S. & Camara, Gilberto, 2021. "Government policies endanger the indigenous peoples of the Brazilian Amazon," Land Use Policy, Elsevier, vol. 108(C).
    18. Dike Zhang & Jianpeng Wang & Ying Wang & Lei Xu & Liang Zheng & Bowen Zhang & Yuzhe Bi & Hui Yang, 2022. "Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    19. Mangani, Andrea, 2021. "When does print media address deforestation? A quantitative analysis of major newspapers from US, UK, and Australia," Forest Policy and Economics, Elsevier, vol. 130(C).
    20. Nguyen, Minh-Hoang, 2023. "Investigating urban residents' involvement in biodiversity conservation in protected areas: Empirical evidence from Vietnam," Thesis Commons z2hjv, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1124-:d:662927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.