IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v67y2021i3id124-2020-jfs.html
   My bibliography  Save this article

Impact of silvicultural system on natural regeneration in Western Himalayan moist temperate forests of Pakistan

Author

Listed:
  • Javed Iqbal

    (Department of Silviculture, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
    Department of Forestry, Shaheed Benazir Bhutto University, Sheringal, Upper Dir, Khyber Pakhtunkhwa, Pakistan)

Abstract

Site conditions (topography, aspect, moisture availability, humus thickness, light exposure, and grazing activities) play a vital role in the germination and regeneration process. The research was conducted in the Himalayan moist temperate forest. The research site was divided based on the silvicultural system (group selection system and single-tree selection system) into 148 plots and 150 plots, respectively. The group selection system was examined on the site of 2 ha which was clear-felled under a project in the 1980's. The present study examined the impact of silvicultural systems on regeneration. The frequency table was used, and relative frequency was calculated for the species and silvicultural system, density per m2 was also calculated. Diversity indices were calculated through taxa, dominance, Simpson's index, Shannon index, evenness, equitability, and fisher alpha. Ten taxa were found in both silvicultural systems, with individual repetition of 17 and 15 taxa, respectively. Group selection is more compact visibly as compared to the single-tree selection system. The single-tree selection system is more diversified in species composition, stand structure, moisture availability, and less humus availability. The study also highlights future predictions for the conservation of these forests, which are highly sensitive and a hotspot for wildlife and climate change phenomena. Silvicultural practices such as silvicultural system, cleaning, weeding, thinning operations are regularly practiced, which can reduce the negative impact on these productive forests.

Suggested Citation

  • Javed Iqbal, 2021. "Impact of silvicultural system on natural regeneration in Western Himalayan moist temperate forests of Pakistan," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(3), pages 101-112.
  • Handle: RePEc:caa:jnljfs:v:67:y:2021:i:3:id:124-2020-jfs
    DOI: 10.17221/124/2020-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/124/2020-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/124/2020-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/124/2020-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Bulušek & Z. Vacek & S. Vacek & J. Král & L. Bílek & I. Králíček, 2016. "Spatial pattern of relict beech (Fagus sylvatica L.) forests in the Sudetes of the Czech Republic and Poland," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(7), pages 293-305.
    2. Josef Gallo & Zdeněk Vacek & Martin Baláš & Stanislav Vacek, 2020. "Germinative capacity and energy of critically endangered Ojców birch (Betula oycoviensis Besser) in the Czech Republic," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(6), pages 227-235.
    3. Stanislav Vacek & Anna Prokůpková & Zdeněk Vacek & Daniel Bulušek & Václav Šimůnek & Ivo Králíček & Romana Prausová & Vojtěch Hájek, 2019. "Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 65(9), pages 331-345.
    4. Jos Barlow & Gareth D. Lennox & Joice Ferreira & Erika Berenguer & Alexander C. Lees & Ralph Mac Nally & James R. Thomson & Silvio Frosini de Barros Ferraz & Julio Louzada & Victor Hugo Fonseca Olivei, 2016. "Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation," Nature, Nature, vol. 535(7610), pages 144-147, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václav Šimůnek & Vojtěch Hájek & Anna Prokůpková & Josef Gallo, 2021. "Finding an imprint of solar and climatic cycles in tree rings of European beech (Fagus sylvatica L.)," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(9), pages 409-419.
    2. Karel Vančura & Anna Prokůpková & Daniel Bulušek & Václav Šimůnek & Vojtěch Hájek & Ivo Králíček, 2020. "Dynamics of mixed lowland forests in Central Bohemia over a 20-year period," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(2), pages 49-62.
    3. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    4. Sirakov, Nikolay & Fontez, Bénédicte & Libourel, Thérèse & dos Santos, Alessio & Mitja, Danielle & Loisel, Patrice, 2019. "A stage-structured hierarchical Bayes model for the babassu palm tree population dynamics – Estimated from anthropogenic open area data sets," Ecological Modelling, Elsevier, vol. 400(C), pages 14-26.
    5. Conceição, Katyanne V. & Chaves, Michel E.D. & Picoli, Michelle C.A. & Sánchez, Alber H. & Soares, Anderson R. & Mataveli, Guilherme A.V. & Silva, Daniel E. & Costa, Joelma S. & Camara, Gilberto, 2021. "Government policies endanger the indigenous peoples of the Brazilian Amazon," Land Use Policy, Elsevier, vol. 108(C).
    6. Mangani, Andrea, 2021. "When does print media address deforestation? A quantitative analysis of major newspapers from US, UK, and Australia," Forest Policy and Economics, Elsevier, vol. 130(C).
    7. repec:caa:jnljfs:v:preprint:id:16-2024-jfs is not listed on IDEAS
    8. Josef Gallo & Lukáš Bílek & Václav Šimůnek & Sonia Roig & J. A. Bravo Fernández, 2020. "Uneven-aged silviculture of Scots pine in Bohemia and Central Spain: comparison study of stand reaction to transition and long-term selection management," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(1), pages 22-35.
    9. Maame Esi Hammond & Radek Pokorný, 2020. "Preliminary assessment of effect of disturbance on natural regeneration in gaps of different sizes," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(5), pages 185-196.
    10. Isabel L. Jones & Joseph W. Bull, 2020. "Major dams and the challenge of achieving “No Net Loss” of biodiversity in the tropics," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(2), pages 435-443, March.
    11. Yingzhuo Zhang & Haoran Yin & Lianqi Zhu & Changhong Miao, 2021. "Landscape Fragmentation in Qinling–Daba Mountains Nature Reserves and Its Influencing Factors," Land, MDPI, vol. 10(11), pages 1-20, October.
    12. Mateus Torres Nazari & Janaína Mazutti & Luana Girardi Basso & Luciane Maria Colla & Luciana Brandli, 2021. "Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11139-11156, August.
    13. Luca Eufemia & Ana Paula Dias Turetta & Michelle Bonatti & Emmanuel Da Ponte & Stefan Sieber, 2022. "Fires in the Amazon Region: Quick Policy Review," Development Policy Review, Overseas Development Institute, vol. 40(5), September.
    14. Jun Ma & Jiawei Li & Wanben Wu & Jiajia Liu, 2023. "Global forest fragmentation change from 2000 to 2020," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Pinillos, Daniel & Poccard-Chapuis, René & Bianchi, Felix J.J.A. & Corbeels, Marc & Timler, Carl J. & Tittonell, Pablo & R. Ballester, Maria Victoria & Schulte, Rogier P., 2021. "Landholders' perceptions on legal reserves and agricultural intensification: Diversity and implications for forest conservation in the eastern Brazilian Amazon," Forest Policy and Economics, Elsevier, vol. 129(C).
    16. Stanislav Vacek & Anna Prokůpková & Zdeněk Vacek & Daniel Bulušek & Václav Šimůnek & Ivo Králíček & Romana Prausová & Vojtěch Hájek, 2019. "Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 65(9), pages 331-345.
    17. Stanislav Vacek & Rostislav Linda & Ivo Králíček & Karel Vančura & Anna Prokůpková & Romana Prausová, 2020. "Effect of structure and dynamics of forests on the occurrence of Erythronium dens-canis," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(9), pages 349-360.
    18. França, Filipe & Solar, Ricardo & Lees, Alexander C. & Martins, Lucas Pereira & Berenguer, Erika & Barlow, Jos, 2021. "Reassessing the role of cattle and pasture in Brazil's deforestation: A response to “Fire, deforestation, and livestock: When the smoke clears”," Land Use Policy, Elsevier, vol. 108(C).
    19. Fonseca Morello, Thiago, 2022. "Subsidization of mechanized tillage as an alternative to fire-based land preparation by smallholders: An economic appraisal of the case of southwestern Brazilian Amazon," Land Use Policy, Elsevier, vol. 123(C).
    20. Yanlong Guo & Peiyu He & Pengyu Chen & Linfu Zhang, 2024. "Ecological Evaluation of Land Resources in the Yangtze River Delta Region by Remote Sensing Observation," Land, MDPI, vol. 13(8), pages 1-18, July.
    21. Chen, Aimin & Wang, Pei & Zhou, Tianshou & Tian, Tianhai, 2022. "Balance of positive and negative regulation for trade-off between efficiency and resilience of high-dimensional networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:67:y:2021:i:3:id:124-2020-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.