IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i2p60-d1579096.html
   My bibliography  Save this article

Forecasting Follies: Machine Learning from Human Errors

Author

Listed:
  • Li Sun

    (Department of Business Analytics & Technology Management, Towson University, 8000 York Road, Towson, MD 21252, USA)

  • Yongchen Zhao

    (Department of Economics, Towson University, Towson, MD 21252, USA)

Abstract

Reliable inflation forecasts are essential for both business operations and macroeconomic policy making. This study explores the potential of using machine learning (ML) techniques to improve the accuracy of human forecasts of inflation. Specifically, we develop and examine ML-centered forecast adjustment procedures where advanced ML techniques are employed to predict and thus mitigate the errors of human forecasts, akin to how an AI-powered spell and grammar checker helps to prevent mistakes in human writing. Our empirical exercises demonstrate the benefits of several popular ML techniques, such as the elastic net, LASSO, and ridge regressions, and provide evidence of their ability to improve both our own benchmark inflation forecasts and those reported by the frequent participants in the US Survey of Professional Forecasters. The forecast adjustment procedures proposed in this paper are conceptually appealing, widely applicable, and empirically effective in reducing forecast bias and improving forecast accuracy.

Suggested Citation

  • Li Sun & Yongchen Zhao, 2025. "Forecasting Follies: Machine Learning from Human Errors," JRFM, MDPI, vol. 18(2), pages 1-25, January.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:2:p:60-:d:1579096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/2/60/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/2/60/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2016. "Forecasting macroeconomic variables in data-rich environments," Economics Letters, Elsevier, vol. 138(C), pages 50-52.
    2. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    3. Lu, Fei & Zeng, Qing & Bouri, Elie & Tao, Ying, 2024. "Forecasting US GDP growth rates in a rich environment of macroeconomic data," International Review of Economics & Finance, Elsevier, vol. 95(C).
    4. Dean Croushore & Tom Stark, 2019. "Fifty Years of the Survey of Professional Forecasters," Economic Insights, Federal Reserve Bank of Philadelphia, vol. 4(4), pages 1-11, October.
    5. Casarin, Roberto & Costola, Michele, 2019. "Structural changes in large economic datasets: A nonparametric homogeneity test," Economics Letters, Elsevier, vol. 176(C), pages 55-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altig, Dave & Baker, Scott & Barrero, Jose Maria & Bloom, Nicholas & Bunn, Philip & Chen, Scarlet & Davis, Steven J. & Leather, Julia & Meyer, Brent & Mihaylov, Emil & Mizen, Paul & Parker, Nicholas &, 2020. "Economic uncertainty before and during the COVID-19 pandemic," Journal of Public Economics, Elsevier, vol. 191(C).
    2. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.
    3. Chen, Zhanshou & Xu, Qiongyao & Li, Huini, 2019. "Inference for multiple change points in heavy-tailed time series via rank likelihood ratio scan statistics," Economics Letters, Elsevier, vol. 179(C), pages 53-56.
    4. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    5. Fabian Kruger & Hendrik Plett, 2022. "Prediction intervals for economic fixed-event forecasts," Papers 2210.13562, arXiv.org, revised Mar 2024.
    6. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    7. Hagenhoff, Tim & Lustenhouwer, Joep, 2023. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    8. Orphanides, Athanasios, 2024. "Enhancing resilience with natural growth targeting," CEPR Discussion Papers 18862, C.E.P.R. Discussion Papers.
    9. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Stephen J. Terry, 2020. "COVID-Induced Economic Uncertainty," NBER Working Papers 26983, National Bureau of Economic Research, Inc.
    10. Mazumder, Sandeep, 2021. "The reaction of inflation forecasts to news about the Fed," Economic Modelling, Elsevier, vol. 94(C), pages 256-264.
    11. Hagenhoff, Tim & Lustenhouwer, Joep, 2020. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," Working Papers 0686, University of Heidelberg, Department of Economics.
    12. Lof, Matthijs & Nyberg, Henri, 2024. "Discount rates and cash flows: A local projection approach," Journal of Banking & Finance, Elsevier, vol. 162(C).
    13. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "What is the Predictive Value of SPF Point and Density Forecasts?," Working Papers 22-37, Federal Reserve Bank of Cleveland.
    14. Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
    15. Dimitriadis, Timo & Gneiting, Tilmann & Jordan, Alexander I. & Vogel, Peter, 2024. "Evaluating probabilistic classifiers: The triptych," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1101-1122.
    16. Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
    17. Адилханова Зарина // Adilkhanova Zarina & Ержан Ислам // Yerzhan Islam, 2024. "Система селективно - комбинированного прогноза инфляции (SSCIF)// Selective-Combined Inflation Forecasting System," Working Papers #2024-13, National Bank of Kazakhstan.
    18. Auer, Benjamin R. & Schuhmacher, Frank & Niemann, Sebastian, 2023. "Cloning mutual fund returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 31-37.
    19. Chad Fulton & Kirstin Hubrich, 2021. "Forecasting US Inflation in Real Time," Econometrics, MDPI, vol. 9(4), pages 1-20, October.
    20. Manzan, Sebastiano, 2021. "Are professional forecasters Bayesian?," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:2:p:60-:d:1579096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.