IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i2p95-d1058806.html
   My bibliography  Save this article

Modeling the Optimal Combination of Proportional and Stop-Loss Reinsurance with Dependent Claim and Stochastic Insurance Premium

Author

Listed:
  • Suci Sari

    (Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia)

  • Arief Hakim

    (Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia)

  • Ikha Magdalena

    (Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia)

  • Khreshna Syuhada

    (Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia)

Abstract

This paper investigates an optimal reinsurance policy using a risk model with dependent claim and insurance premium by assuming that the insurance premium is random. Their dependence structure is modeled using Sarmanov’s bivariate exponential distribution and the Farlie–Gumbel–Morgenstern (FGM) copula-based bivariate exponential distribution. The reinsurance premium paid by the insurer to the reinsurer is fixed and is charged by the expected value premium principle (EVPP) and standard deviation premium principle (SDPP). The main objective of this paper is to determine the proportion and retention limit of the optimal combination of proportional and stop-loss reinsurance for the insurer. Specifically, with a constrained reinsurance premium, we use the minimization of the Value-at-Risk (VaR) of the insurer’s net cost. When determining the optimal proportion and retention limit, we provide some numerical examples to illustrate the theoretical results. We show that the dependence parameter, the probability of claim occurrence, and the confidence level have effects on the optimal VaR of the insurer’s net cost.

Suggested Citation

  • Suci Sari & Arief Hakim & Ikha Magdalena & Khreshna Syuhada, 2023. "Modeling the Optimal Combination of Proportional and Stop-Loss Reinsurance with Dependent Claim and Stochastic Insurance Premium," JRFM, MDPI, vol. 16(2), pages 1-20, February.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:2:p:95-:d:1058806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/2/95/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/2/95/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cossette, Hélène & Marceau, Etienne & Perreault, Samuel, 2015. "On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 214-224.
    2. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 93-112, May.
    3. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 487-509, November.
    4. Cai, Jun & Lemieux, Christiane & Liu, Fangda, 2016. "Optimal Reinsurance From The Perspectives Of Both An Insurer And A Reinsurer," ASTIN Bulletin, Cambridge University Press, vol. 46(3), pages 815-849, September.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Kahn, Paul Markham, 1961. "Some Remarks on a Recent Paper by Borch*)," ASTIN Bulletin, Cambridge University Press, vol. 1(5), pages 265-272, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjun Jiang & Jiandong Ren & Ričardas Zitikis, 2017. "Optimal Reinsurance Policies under the VaR Risk Measure When the Interests of Both the Cedent and the Reinsurer Are Taken into Account," Risks, MDPI, vol. 5(1), pages 1-22, February.
    2. El Attar Abderrahim & El Hachloufi Mostafa & Guennoun Zine El Abidine, 2017. "An Inclusive Criterion For An Optimal Choice Of Reinsurance," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 1-22, December.
    3. Jianfa Cong & Ken Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    4. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    5. Chi, Yichun & Liu, Fangda, 2021. "Enhancing an insurer's expected value by reinsurance and external financing," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 466-484.
    6. Chi, Yichun & Weng, Chengguo, 2013. "Optimal reinsurance subject to Vajda condition," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 179-189.
    7. Boonen, Tim J. & Jiang, Wenjun, 2024. "Robust insurance design with distortion risk measures," European Journal of Operational Research, Elsevier, vol. 316(2), pages 694-706.
    8. Jianfa Cong & Ken Seng Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    9. Chi, Yichun & Tan, Ken Seng, 2013. "Optimal reinsurance with general premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 180-189.
    10. Ambrose Lo & Zhaofeng Tang, 2019. "Pareto-optimal reinsurance policies in the presence of individual risk constraints," Annals of Operations Research, Springer, vol. 274(1), pages 395-423, March.
    11. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    12. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    13. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Solvency II, regulatory capital, and optimal reinsurance: How good are Conditional Value-at-Risk and spectral risk measures?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 156-167.
    14. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    15. Khreshna Syuhada & Arief Hakim & Suci Sari, 2021. "The Combined Stop-Loss and Quota-Share Reinsurance: Conditional Tail Expectation-Based Optimization from the Joint Perspective of Insurer and Reinsurer," Risks, MDPI, vol. 9(7), pages 1-21, July.
    16. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    17. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    18. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    19. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    20. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:2:p:95-:d:1058806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.