IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i2p86-d502548.html
   My bibliography  Save this article

Time-Consistent Investment and Consumption Strategies under a General Discount Function

Author

Listed:
  • Ishak Alia

    (Laboratory of Applied Mathematics, University Mohamed Khider, P.O. Box 145, Biskra 07000, Algeria)

  • Farid Chighoub

    (Laboratory of Applied Mathematics, University Mohamed Khider, P.O. Box 145, Biskra 07000, Algeria)

  • Nabil Khelfallah

    (Laboratory of Applied Mathematics, University Mohamed Khider, P.O. Box 145, Biskra 07000, Algeria)

  • Josep Vives

    (Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain)

Abstract

In the present paper, we investigate the Merton portfolio management problem in the context of non-exponential discounting, a context that gives rise to time-inconsistency of the decision-maker. We consider equilibrium policies within the class of open-loop controls that are characterized, in our context, by means of a variational method which leads to a stochastic system that consists of a flow of forward-backward stochastic differential equations and an equilibrium condition. An explicit representation of the equilibrium policies is provided for the special cases of power, logarithmic and exponential utility functions.

Suggested Citation

  • Ishak Alia & Farid Chighoub & Nabil Khelfallah & Josep Vives, 2021. "Time-Consistent Investment and Consumption Strategies under a General Discount Function," JRFM, MDPI, vol. 14(2), pages 1-27, February.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:2:p:86-:d:502548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/2/86/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/2/86/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    2. Zhao, Qian & Shen, Yang & Wei, Jiaqin, 2014. "Consumption–investment strategies with non-exponential discounting and logarithmic utility," European Journal of Operational Research, Elsevier, vol. 238(3), pages 824-835.
    3. Cui, Xiangyu & Li, Duan & Shi, Yun, 2017. "Self-coordination in time inconsistent stochastic decision problems: A planner–doer game framework," Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 91-113.
    4. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    5. Per Krusell & Anthony A. Smith, Jr., 2003. "Consumption--Savings Decisions with Quasi--Geometric Discounting," Econometrica, Econometric Society, vol. 71(1), pages 365-375, January.
    6. E. S. Phelps & R. A. Pollak, 1968. "On Second-Best National Saving and Game-Equilibrium Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 35(2), pages 185-199.
    7. Zou, Ziran & Chen, Shou & Wedge, Lei, 2014. "Finite horizon consumption and portfolio decisions with stochastic hyperbolic discounting," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 70-80.
    8. Wendell H. Fleming & Thaleia Zariphopoulou, 1991. "An Optimal Investment/Consumption Model with Borrowing," Mathematics of Operations Research, INFORMS, vol. 16(4), pages 802-822, November.
    9. Karp, Larry, 2007. "Non-constant discounting in continuous time," Journal of Economic Theory, Elsevier, vol. 132(1), pages 557-568, January.
    10. Marín-Solano, Jesús & Navas, Jorge, 2010. "Consumption and portfolio rules for time-inconsistent investors," European Journal of Operational Research, Elsevier, vol. 201(3), pages 860-872, March.
    11. repec:dau:papers:123456789/11473 is not listed on IDEAS
    12. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    13. George Loewenstein & Drazen Prelec, 1992. "Anomalies in Intertemporal Choice: Evidence and an Interpretation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 573-597.
    14. J. Wang & P. A. Forsyth, 2012. "Comparison Of Mean Variance Like Strategies For Optimal Asset Allocation Problems," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-32.
    15. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    16. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    17. Chen, Shumin & Li, Zhongfei & Zeng, Yan, 2014. "Optimal dividend strategies with time-inconsistent preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 150-172.
    18. Michal Pešta & Martin Wendler, 2020. "Nuisance-parameter-free changepoint detection in non-stationary series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 379-408, June.
    19. Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.
    20. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    21. Robert J. Barro, 1999. "Ramsey Meets Laibson in the Neoclassical Growth Model," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(4), pages 1125-1152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongxia Liang & Keyu Zhang, 2023. "Time-inconsistent mean field and n-agent games under relative performance criteria," Papers 2312.14437, arXiv.org, revised Apr 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Qian & Shen, Yang & Wei, Jiaqin, 2014. "Consumption–investment strategies with non-exponential discounting and logarithmic utility," European Journal of Operational Research, Elsevier, vol. 238(3), pages 824-835.
    2. Chen, Shumin & Zeng, Yan & Hao, Zhifeng, 2017. "Optimal dividend strategies with time-inconsistent preferences and transaction costs in the Cramér–Lundberg model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 31-45.
    3. Marín-Solano, Jesús & Navas, Jorge, 2010. "Consumption and portfolio rules for time-inconsistent investors," European Journal of Operational Research, Elsevier, vol. 201(3), pages 860-872, March.
    4. Liu, Bo & Niu, Yingjie & Zhang, Yuhua, 2019. "Corporate liquidity and risk management with time-inconsistent preferences," Economic Modelling, Elsevier, vol. 81(C), pages 295-307.
    5. Chen Shou & Xiang Shengpeng & He Hongbo, 2019. "Do Time Preferences Matter in Intertemporal Consumption and Portfolio Decisions?," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 19(2), pages 1-13, June.
    6. Zou, Ziran & Chen, Shou & Wedge, Lei, 2014. "Finite horizon consumption and portfolio decisions with stochastic hyperbolic discounting," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 70-80.
    7. Qinglong Zhou & Gaofeng Zong, 2016. "Time-Inconsistent Stochastic Linear-quadratic Differential Game," Papers 1607.00638, arXiv.org.
    8. Bach Dong Xuan & Philippe Bich & Bertrand Wigniolle, 2022. "On multiple discount rates and present bias," Working Papers halshs-03884664, HAL.
    9. de-Paz, Albert & Marín-Solano, Jesús & Navas, Jorge & Roch, Oriol, 2014. "Consumption, investment and life insurance strategies with heterogeneous discounting," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 66-75.
    10. Camilo Hern'andez & Dylan Possamai, 2020. "Me, myself and I: a general theory of non-Markovian time-inconsistent stochastic control for sophisticated agents," Papers 2002.12572, arXiv.org, revised Jul 2021.
    11. Liya Liu & Yingjie Niu & Yuanping Wang & Jinqiang Yang, 2020. "Optimal consumption with time-inconsistent preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 785-815, October.
    12. Koo, Ja Eun & Lim, Byung Hwa, 2021. "Consumption and life insurance decisions under hyperbolic discounting and taxation," Economic Modelling, Elsevier, vol. 94(C), pages 288-295.
    13. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    14. Huiling Wu & Chengguo Weng & Yan Zeng, 2018. "Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 541-582, March.
    15. Alain Bensoussan & Kwok Chuen Wong & Sheung Chi Phillip Yam, 2019. "A paradox in time-consistency in the mean–variance problem?," Finance and Stochastics, Springer, vol. 23(1), pages 173-207, January.
    16. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    17. Haluk Yener & Fuat Can Beylunioglu, 2017. "Outperforming A Stochastic Benchmark Under Borrowing And Rectangular Constraints," Working Papers 1701, The Center for Financial Studies (CEFIS), Istanbul Bilgi University.
    18. Drouhin, Nicolas, 2020. "Non-stationary additive utility and time consistency," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 1-14.
    19. Chen, Shumin & Luo, Dan & Yao, Haixiang, 2024. "Optimal investor life cycle decisions with time-inconsistent preferences," Journal of Banking & Finance, Elsevier, vol. 161(C).
    20. Tyson, Christopher J., 2008. "Management of a capital stock by Strotz's naive planner," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2214-2239, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:2:p:86-:d:502548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.