IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v13y2020i11p288-d448162.html
   My bibliography  Save this article

The Aumann–Serrano Performance Index for Multi-Period Gambles in Stock Data

Author

Listed:
  • Jiro Hodoshima

    (Faculty of Economics, Nagoya University of Commerce and Business, 4-4 Sagamine, Komenoki-cho, Nisshin-shi, Aichi 470-0193, Japan)

  • Toshiyuki Yamawake

    (Faculty of Economics, Nagoya University of Commerce and Business, 4-4 Sagamine, Komenoki-cho, Nisshin-shi, Aichi 470-0193, Japan)

Abstract

We present an empirical study of the Aumann-Serrano performance index for multi-period gambles when the underlying stochastic process is assumed to be a normal mixture process with time-varying volatility. We compare the Aumann-Serrano performance index for multi-period gambles with that for one-period gambles as well as the Sharpe ratio. Our empirical study is obtained using a selection of U.S. stock data and shows evaluation of a selection of stocks becomes more distinct in multi-period gambles than in one-period gambles in the sense that a favorable evaluation score becomes even better in multi-period gambles than in one-period gambles while an unfavorable evaluation score becomes even worse in multi-period gambles than in one-period gambles.

Suggested Citation

  • Jiro Hodoshima & Toshiyuki Yamawake, 2020. "The Aumann–Serrano Performance Index for Multi-Period Gambles in Stock Data," JRFM, MDPI, vol. 13(11), pages 1-18, November.
  • Handle: RePEc:gam:jjrfmx:v:13:y:2020:i:11:p:288-:d:448162
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/13/11/288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/13/11/288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Robert J. Aumann & Roberto Serrano, 2008. "An Economic Index of Riskiness," Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 810-836, October.
    3. Dean P. Foster & Sergiu Hart, 2009. "An Operational Measure of Riskiness," Journal of Political Economy, University of Chicago Press, vol. 117(5), pages 785-814.
    4. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    5. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Jonathan Ingersoll & Ivo Welch, 2007. "Portfolio Performance Manipulation and Manipulation-proof Performance Measures," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1503-1546, 2007 17.
    8. Sergiu Hart, 2011. "Comparing Risks by Acceptance and Rejection," Journal of Political Economy, University of Chicago Press, vol. 119(4), pages 617-638.
    9. Jiro Hodoshima, 2019. "Stock performance by utility indifference pricing and the Sharpe ratio," Quantitative Finance, Taylor & Francis Journals, vol. 19(2), pages 327-338, February.
    10. Kadan, Ohad & Liu, Fang, 2014. "Performance evaluation with high moments and disaster risk," Journal of Financial Economics, Elsevier, vol. 113(1), pages 131-155.
    11. Alexander, Carol, 2004. "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2957-2980, December.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. Jiro Hodoshima & Nana Otsuki, 2019. "Evaluation by the Aumann and Serrano performance index and Sharpe ratio: Bitcoin performance," Applied Economics, Taylor & Francis Journals, vol. 51(39), pages 4282-4298, August.
    14. Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
    15. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    16. Engle, Robert F, 1990. "Stock Volatility and the Crash of '87: Discussion," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 103-106.
    17. Alexander Cherny & Dilip Madan, 2009. "New Measures for Performance Evaluation," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2371-2406, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Richard & Horng, Tzyy-Leng & Horng, Min-Sun & Wang, Amy Z.-H., 2023. "A performance evaluation of portfolio insurance under the Black and Scholes framework: An application of the economic index of riskiness," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 269-276.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiro Hodoshima & Toshiyuki Yamawake, 2022. "Comparing Dynamic and Static Performance Indexes in the Stock Market: Evidence From Japan," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(2), pages 171-193, June.
    2. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    3. Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Time-varying mixture GARCH models and asymmetric volatility," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 602-623.
    4. Alexander, Carol & Lazar, Emese & Stanescu, Silvia, 2021. "Analytic moments for GJR-GARCH (1, 1) processes," International Journal of Forecasting, Elsevier, vol. 37(1), pages 105-124.
    5. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    6. Carol Alexander & Emese Lazar & Silvia Stanescu, 2010. "Analytic Moments for GARCH Processes," ICMA Centre Discussion Papers in Finance icma-dp2011-07, Henley Business School, University of Reading, revised Apr 2011.
    7. Jiro Hodoshima & Tetsuya Misawa & Yoshio Miyahara, 2020. "Stock Performance Evaluation Incorporating High Moments and Disaster Risk: Evidence from Japan," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(2), pages 155-174, June.
    8. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    9. Heller, Yuval & Schreiber, Amnon, 2020. "Short-term investments and indices of risk," Theoretical Economics, Econometric Society, vol. 15(3), July.
    10. Takaishi, Tetsuya, 2017. "Rational GARCH model: An empirical test for stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 451-460.
    11. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    12. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    13. Maurício Yoshinori Une & Marcelo Savino Portugal, 2005. "Fear of disruption: a model of Markov-switching regimes for the Brazilian country risk conditional volatility," Econometrics 0509005, University Library of Munich, Germany.
    14. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    15. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    16. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    17. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    18. Giuseppe Storti & Cosimo Vitale, 2003. "BL-GARCH models and asymmetries in volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 19-39, February.
    19. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    20. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:11:p:288-:d:448162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.