IDEAS home Printed from https://ideas.repec.org/a/gam/jjopen/v7y2024i3p17-318d1455310.html
   My bibliography  Save this article

Enhancing Pulmonary Diagnosis in Chest X-rays through Generative AI Techniques

Author

Listed:
  • Theodora Sanida

    (Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece)

  • Maria Vasiliki Sanida

    (Department of Digital Systems, University of Piraeus, 18534 Piraeus, Greece)

  • Argyrios Sideris

    (Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece)

  • Minas Dasygenis

    (Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece)

Abstract

Chest X-ray imaging is an essential tool in the diagnostic procedure for pulmonary conditions, providing healthcare professionals with the capability to immediately and accurately determine lung anomalies. This imaging modality is fundamental in assessing and confirming the presence of various lung issues, allowing for timely and effective medical intervention. In response to the widespread prevalence of pulmonary infections globally, there is a growing imperative to adopt automated systems that leverage deep learning (DL) algorithms. These systems are particularly adept at handling large radiological datasets and providing high precision. This study introduces an advanced identification model that utilizes the VGG16 architecture, specifically adapted for identifying various lung anomalies such as opacity, COVID-19 pneumonia, normal appearance of the lungs, and viral pneumonia. Furthermore, we address the issue of model generalizability, which is of prime significance in our work. We employed the data augmentation technique through CycleGAN, which, through experimental outcomes, has proven effective in enhancing the robustness of our model. The combined performance of our advanced VGG model with the CycleGAN augmentation technique demonstrates remarkable outcomes in several evaluation metrics, including recall, F1-score, accuracy, precision, and area under the curve (AUC). The results of the advanced VGG16 model showcased remarkable accuracy, achieving 98.58%. This study contributes to advancing generative artificial intelligence (AI) in medical imaging analysis and establishes a solid foundation for ongoing developments in computer vision technologies within the healthcare sector.

Suggested Citation

  • Theodora Sanida & Maria Vasiliki Sanida & Argyrios Sideris & Minas Dasygenis, 2024. "Enhancing Pulmonary Diagnosis in Chest X-rays through Generative AI Techniques," J, MDPI, vol. 7(3), pages 1-17, August.
  • Handle: RePEc:gam:jjopen:v:7:y:2024:i:3:p:17-318:d:1455310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8800/7/3/17/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8800/7/3/17/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajay Bandi & Pydi Venkata Satya Ramesh Adapa & Yudu Eswar Vinay Pratap Kumar Kuchi, 2023. "The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges," Future Internet, MDPI, vol. 15(8), pages 1-60, July.
    2. Maria Vasiliki Sanida & Theodora Sanida & Argyrios Sideris & Minas Dasygenis, 2024. "An Advanced Deep Learning Framework for Multi-Class Diagnosis from Chest X-ray Images," J, MDPI, vol. 7(1), pages 1-24, January.
    3. Viet Tran & Giles Barrington & Zach Aandahl & Amelia Lawrence & Senudi Wijewardena & Brian Doyle & Louise Cooley, 2023. "Evaluation of the Abbott Panbio™ COVID-19 Ag Rapid Antigen Test for Asymptomatic Patients during the Omicron Wave," J, MDPI, vol. 6(1), pages 1-9, March.
    4. Vikram Venkata Puram & Anish Sethi & Olga Epstein & Malik Ghannam & Kevin Brown & James Ashe & Brent Berry, 2023. "Central Apnea in Patients with COVID-19 Infection," J, MDPI, vol. 6(1), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Safa Jameel Al-Kamil & Róbert Szabolcsi, 2024. "Enhancing Mobile Robot Navigation: Optimization of Trajectories through Machine Learning Techniques for Improved Path Planning Efficiency," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    2. Nikša Alfirević & Daniela Garbin Praničević & Mirela Mabić, 2024. "Custom-Trained Large Language Models as Open Educational Resources: An Exploratory Research of a Business Management Educational Chatbot in Croatia and Bosnia and Herzegovina," Sustainability, MDPI, vol. 16(12), pages 1-18, June.
    3. Shaotong Qi & Yubo Cheng & Zhiyuan Li & Jiaxin Wang & Huaiyi Li & Chunwei Zhang, 2024. "Advanced Deep Learning Techniques for Battery Thermal Management in New Energy Vehicles," Energies, MDPI, vol. 17(16), pages 1-38, August.
    4. Maria Vasiliki Sanida & Theodora Sanida & Argyrios Sideris & Minas Dasygenis, 2024. "An Advanced Deep Learning Framework for Multi-Class Diagnosis from Chest X-ray Images," J, MDPI, vol. 7(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjopen:v:7:y:2024:i:3:p:17-318:d:1455310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.