IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v12y2024i4p118-d1532411.html
   My bibliography  Save this article

A Hybrid of Box-Jenkins ARIMA Model and Neural Networks for Forecasting South African Crude Oil Prices

Author

Listed:
  • Johannes Tshepiso Tsoku

    (Department of Business Statistics and Operations Research, North-West University, Mafikeng Campus, Mmabatho 2745, South Africa)

  • Daniel Metsileng

    (Department of Business Statistics and Operations Research, North-West University, Mafikeng Campus, Mmabatho 2745, South Africa)

  • Tshegofatso Botlhoko

    (Department of Business Statistics and Operations Research, North-West University, Mafikeng Campus, Mmabatho 2745, South Africa)

Abstract

The current study aims to model the South African crude oil prices using the hybrid of Box-Jenkins autoregressive integrated moving average (ARIMA) and Neural Networks (NNs). This study introduces a hybrid approach to forecasting methods aimed at resolving the issues of lack of precision in forecasting. The proposed methodology includes two models, namely, hybridisation of ARIMA with artificial neural network (ANN)-based Extreme Learning Machine (ELM) and ARIMA with general regression neural network (GRNN) to model both linear and nonlinear simultaneously. The models were compared with the base ARIMA model. The study utilised monthly time series data spanning from January 2021 to March 2023. The formal stationarity test confirmed that the crude oil price series is integrated of order one, I(1) . For the linear process, the ARIMA (2,1,2) model was identified as the best fit for the series and successfully passed all diagnostic tests. The ARIMA-ANN-based ELM hybrid model outperformed both the individual ARIMA model and the ARIMA-GRNN hybrid. However, the ARIMA model also showed better performance than the ARIMA-GRNN hybrid, highlighting its strong competitiveness compared to the ARIMA-ANN-based ELM model. The hybrid models are recommended for use by policy makers and practitioners in general.

Suggested Citation

  • Johannes Tshepiso Tsoku & Daniel Metsileng & Tshegofatso Botlhoko, 2024. "A Hybrid of Box-Jenkins ARIMA Model and Neural Networks for Forecasting South African Crude Oil Prices," IJFS, MDPI, vol. 12(4), pages 1-13, November.
  • Handle: RePEc:gam:jijfss:v:12:y:2024:i:4:p:118-:d:1532411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/12/4/118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/12/4/118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    2. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    3. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    4. Saaed, A.A.J., 2007. "Inflation and Economic Growth in Kuwait: 1985-2005. Evidence from Co-Integration and Error Correction Model," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 7(1).
    5. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    6. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    7. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    8. Creel, Jerome & Bihan, Herve Le, 2006. "Using structural balance data to test the fiscal theory of the price level: Some international evidence," Journal of Macroeconomics, Elsevier, vol. 28(2), pages 338-360, June.
    9. Pulapre Balakrishnan & M Parameswaran, 2019. "Modeling the Dynamics of Inflation in India," Working Papers 16, Ashoka University, Department of Economics.
    10. Baum, Christopher F & Karasulu, Meral, 1998. "Modelling Federal Reserve Discount Policy," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 53-70, April.
    11. Chen, Pei-Fen & Chien, Mei-Se & Lee, Chien-Chiang, 2011. "Dynamic modeling of regional house price diffusion in Taiwan," Journal of Housing Economics, Elsevier, vol. 20(4), pages 315-332.
    12. Isaac Abunyuwah, 2020. "Modeling Market Integration and Asymmetric Price Transmission Dynamics of Yam Markets in Ghana," Journal of Economics and Behavioral Studies, AMH International, vol. 12(3), pages 23-31.
    13. Shahzad, Syed Jawad Hussain & Raza, Naveed & Balcilar, Mehmet & Ali, Sajid & Shahbaz, Muhammad, 2017. "Can economic policy uncertainty and investors sentiment predict commodities returns and volatility?," Resources Policy, Elsevier, vol. 53(C), pages 208-218.
    14. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Venus Khim-Sen Liew & Hock-Ann Lee & Kian-Ping Lim & Huay-Huay Lee, 2008. "Linearity and Stationarity of South Asian Real Exchange Rates," The IUP Journal of Applied Economics, IUP Publications, vol. 0(5), pages 48-58, September.
    16. Jin, Xiaoye, 2015. "Volatility transmission and volatility impulse response functions among the Greater China stock markets," Journal of Asian Economics, Elsevier, vol. 39(C), pages 43-58.
    17. Karakotsios, Achillefs & Katrakilidis, Constantinos & Kroupis, Nikolaos, 2021. "The dynamic linkages between food prices and oil prices. Does asymmetry matter?," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    18. Mohsen Bahmani-Oskooee & Taggert Brooks, 2003. "A new criteria for selecting the optimum lags in Johansen's cointegration technique," Applied Economics, Taylor & Francis Journals, vol. 35(8), pages 875-880.
    19. Isabel Cortés-Jiménez & Manuel Artís, 2005. "The role of the tourism sector in economic development - Lessons from the Spanish experience," ERSA conference papers ersa05p488, European Regional Science Association.
    20. Soto, Raimundo, 2009. "Dollarization, economic growth, and employment," Economics Letters, Elsevier, vol. 105(1), pages 42-45, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:12:y:2024:i:4:p:118-:d:1532411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.