IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v21y2024i8p1031-d1450374.html
   My bibliography  Save this article

Effect of Moringa oleifera Seeds Powder on Metallic Trace Elements Concentrations in a Wastewater Treatment Plant in Senegal

Author

Listed:
  • Nini Sané

    (Géoressources & Environnement, EA 4592, Université Bordeaux Montaigne, 1 Allée F. Daguin, 33607 Pessac, France
    Laboratoire Eau, Energie, Environnement et Procédés Industriels, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar-Fann, Dakar 5085, Senegal)

  • Malick Mbengue

    (Laboratoire Eau, Energie, Environnement et Procédés Industriels, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar-Fann, Dakar 5085, Senegal)

  • Seyni Ndoye

    (Laboratoire Eau, Energie, Environnement et Procédés Industriels, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar-Fann, Dakar 5085, Senegal)

  • Serge Stoll

    (F.-A. Forel Department, Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, 1205 Geneva, Switzerland)

  • John Poté

    (F.-A. Forel Department, Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, 1205 Geneva, Switzerland)

  • Philippe Le Coustumer

    (Bordeaux Imaging Center, CNRS UAR3420-INSERM US4, Université de Bordeaux, 146 Rue Léo Saignat, CS 61292, CEDEX, 33076 Bordeaux, France)

Abstract

A wastewater treatment plant (WWTP) prototype coupled with Moringa oleifera seeds (MOSs) was developed to evaluate its effectiveness to reduce metallic trace elements (MTEs) in domestic wastewater. The WWTP is composed of a septic tank (F0) where wastewater is treated by biological processes under anaerobic conditions, followed by a bacterial filter (F1) where wastewater is filtered under aerobic conditions, followed by an infiltration well (F2), which provides additional filtration of wastewater before discharge into the soil. MTEs present in waters can bind with humic substances contained in colloid particles and then be eliminated by coagulation–flocculation with a cationic polyelectrolyte. MOSs contain positively charged cationic polymers that can neutralize the colloids contained in waters, which are negatively charged. Based on this observation, 300 mg·L −1 of MOS was added into F0, 50 mg·L −1 into F1, and 50 mg·L −1 into F2 mg·L −1 . MOS activation in samples was performed by stirring rapidly for 1.5 min, followed by 5 min of gentle stirring and 3 h of settling. The data analysis shows that wastewater samples had significant concentrations of MTEs, particularly for Cu, Ni, Sr, and Ti, and sediment samples had high amounts of Cr, Cu, Ni, Sr, Ti, and V. The addition of MOS to F0, F1, and F2 samples resulted in reductions in MTE concentration of up to 36%, 71%, 71%, 29%, 93%, 81%, 13%, 52%, and 67% for Co, Cr, Cu, Ni, Pb, Se, Sr, Ti, and V, respectively. The quantified MTEs (As, Co, Cr, Cu, Ni, Pb, Se and V) in treated samples were reported to be lower than UN-EP standards for a safe reuse for irrigation and MOS proved to be as effective as chemical coagulants such as lime and ferric iron for the removal of MTEs contained in wastewater. These results highlight the potential of MOSs as natural coagulants for reducing MTE content in domestic wastewater. This study could be the first to evaluate the effectiveness of MOS in reducing 10 MTEs, including As, Co, Se, Sr, Ti, and V, which are currently understudied. It could also provide a better understanding of the origin of MTEs found in domestic wastewaters and how an effective treatment process can result in high-quality treated wastewaters that can be reused for irrigation without posing health or environmental risks. However, more research on MOSs is needed to determine the type and composition of the coagulant substance found in the seeds, as well as the many mechanisms involved in the decrease in MTEs by MOSs, which is currently understudied. A better understanding of MOS structure is required to determine the optimum alternative for ensuring the optimal effect of MOS paired with WWTP in removing MTEs from domestic wastewaters.

Suggested Citation

  • Nini Sané & Malick Mbengue & Seyni Ndoye & Serge Stoll & John Poté & Philippe Le Coustumer, 2024. "Effect of Moringa oleifera Seeds Powder on Metallic Trace Elements Concentrations in a Wastewater Treatment Plant in Senegal," IJERPH, MDPI, vol. 21(8), pages 1-27, August.
  • Handle: RePEc:gam:jijerp:v:21:y:2024:i:8:p:1031-:d:1450374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/21/8/1031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/21/8/1031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sana Khalid & Muhammad Shahid & Natasha & Irshad Bibi & Tania Sarwar & Ali Haidar Shah & Nabeel Khan Niazi, 2018. "A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries," IJERPH, MDPI, vol. 15(5), pages 1-36, May.
    2. Anthony I. Okoh & Thulani Sibanda & Siyabulela S. Gusha, 2010. "Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment," IJERPH, MDPI, vol. 7(6), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabrijel Ondrasek & Peta L. Clode & Matt R. Kilburn & Paul Guagliardo & Davor Romić & Zed Rengel, 2019. "Zinc and Cadmium Mapping in the Apical Shoot and Hypocotyl Tissues of Radish by High-Resolution Secondary Ion Mass Spectrometry (NanoSIMS) after Short-Term Exposure to Metal Contamination," IJERPH, MDPI, vol. 16(3), pages 1-13, January.
    2. Xiaotong Wen & Huilie Zheng & Fang Yuan & Hui Zhu & Duyi Kuang & Zhiqiang Shen & Yuanan Lu & Zhaokang Yuan, 2019. "Comparative Study of Two Methods of Enteric Virus Detection and Enteric Virus Relationship with Bacterial Indicator in Poyang Lake, Jiangxi, China," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    3. Amira Oueslati & Samia Dabbou & Nosra Methneni & Giuseppe Montevecchi & Vincenzo Nava & Rossana Rando & Giovanni Bartolomeo & Andrea Antonelli & Giuseppa Di Bella & Hedi Ben Mansour, 2023. "Pomological and Olive Oil Quality Characteristics Evaluation under Short Time Irrigation of Olive Trees cv. Chemlali with Untreated Industrial Poultry Wastewater," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    4. Laura Mirra & Simone Russo & Massimiliano Borrello, 2024. "Exploring Factors Shaping Farmer Behavior in Wastewater Utilization for Agricultural Practices: A Rapid Review," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
    5. Tamerlan Srymbetov & Albina Jetybayeva & Dinara Dikhanbayeva & Luis Rojas‐Solórzano, 2023. "Mapping non‐conventional atmospheric drinking‐water harvesting opportunities in Central Eurasia: The case of Kazakhstan," Natural Resources Forum, Blackwell Publishing, vol. 47(1), pages 87-113, February.
    6. Sören Thiele-Bruhn & Wei Zhang, 2023. "Influence of Manure as a Complex Mixture on Soil Sorption of Pharmaceuticals—Studies with Selected Chemical Components of Manure," IJERPH, MDPI, vol. 20(12), pages 1-13, June.
    7. Kristie L. Ebi & Frances Harris & Giles B. Sioen & Chadia Wannous & Assaf Anyamba & Peng Bi & Melanie Boeckmann & Kathryn Bowen & Guéladio Cissé & Purnamita Dasgupta & Gabriel O. Dida & Alexandros Gas, 2020. "Transdisciplinary Research Priorities for Human and Planetary Health in the Context of the 2030 Agenda for Sustainable Development," IJERPH, MDPI, vol. 17(23), pages 1-25, November.
    8. Vincent Nnamdigadi Chigor & Anthony Ifeanyi Okoh, 2012. "Quantitative RT-PCR Detection of Hepatitis A Virus, Rotaviruses and Enteroviruses in the Buffalo River and Source Water Dams in the Eastern Cape Province of South Africa," IJERPH, MDPI, vol. 9(11), pages 1-16, November.
    9. Pal, Sumit & Patel, Neelam & Malik, Anushree & Sharma, Amrit & Pal, Upma & K.G., Rosin & Singh, D.K., 2023. "Eco-friendly treatment of wastewater and its impact on soil and vegetables using flood and micro-irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Gerard Quarcoo & Lady A. Boamah Adomako & Arpine Abrahamyan & Samuel Armoo & Augustina A. Sylverken & Matthew Glover Addo & Sevak Alaverdyan & Nasreen S. Jessani & Anthony D. Harries & Hawa Ahmed & Re, 2022. "What Is in the Salad? Escherichia coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana," IJERPH, MDPI, vol. 19(19), pages 1-12, October.
    11. Essam M. Janahi & Sakina Mustafa & Saba F. D. Parkar & Humood A. Naser & Zaki M. Eisa, 2020. "Detection of Enteric Viruses and Bacterial Indicators in a Sewage Treatment Center and Shallow Water Bay," IJERPH, MDPI, vol. 17(18), pages 1-13, September.
    12. Hamid Reza Asghari & Günther Bochmann & Zahra Taghizadeh Tabari, 2022. "Effectiveness of Biochar and Zeolite Soil Amendments in Reducing Pollution of Municipal Wastewater from Nitrogen and Coliforms," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    13. Husnain Haider & Mohammed AlHetari & Abdul Razzaq Ghumman & Ibrahim Saleh Al-Salamah & Hussein Thabit & Md. Shafiquzzaman, 2021. "Continuous Performance Improvement Framework for Sustainable Wastewater Treatment Facilities in Arid Regions: Case of Wadi Rumah in Qassim, Saudi Arabia," IJERPH, MDPI, vol. 18(13), pages 1-24, June.
    14. Zhenfeng Zang & Yonghua Li & Hairong Li & Zhaohui Guo & Ru Zhang, 2020. "Spatiotemporal Variation and Pollution Assessment of Pb/Zn from Smelting Activities in China," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
    15. Kingsley Ehi Ebomah & Martins Ajibade Adefisoye & Anthony Ifeanyi Okoh, 2018. "Pathogenic Escherichia coli Strains Recovered from Selected Aquatic Resources in the Eastern Cape, South Africa, and Its Significance to Public Health," IJERPH, MDPI, vol. 15(7), pages 1-10, July.
    16. Niklas Pleger & Beatrix Kloft & David Quarcoo & Simona Zitnik & Stefanie Mache & Doris Klingelhoefer & David A Groneberg, 2014. "Bacterial Meningitis: A Density-Equalizing Mapping Analysis of the Global Research Architecture," IJERPH, MDPI, vol. 11(10), pages 1-13, September.
    17. Balengayabo, Jonas G. & Kassenga, Gabriel R. & Mgana, Shaaban M. & Salukele, Fredrick, 2024. "Impact of recurring irrigation with treated domestic wastewater on heavy metal accumulation in the soil," Agricultural Water Management, Elsevier, vol. 297(C).
    18. Alan Alvarez-Holguin & Gabriel Sosa-Perez & Omar Castor Ponce-Garcia & Carlos Rene Lara-Macias & Federico Villarreal-Guerrero & Carlos Gustavo Monzon-Burgos & Jesus Manuel Ochoa-Rivero, 2022. "The Impact of Treated Wastewater Irrigation on the Metabolism of Barley Grown in Arid and Semi-Arid Regions," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
    19. Ingrid Papajová & Júlia Šmigová & Gabriela Gregová & Jindřich Šoltys & Ján Venglovský & Ján Papaj & Tatiana Szabóová & Nikola Dančová & Lukáš Ihnacik & Ingrid Schusterová & Jana Sušinková & Jana Rakov, 2022. "Effect of Wastewater Treatment on Bacterial Community, Antibiotic-Resistant Bacteria and Endoparasites," IJERPH, MDPI, vol. 19(5), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:21:y:2024:i:8:p:1031-:d:1450374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.