IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i7p5384-d1115345.html
   My bibliography  Save this article

Evaluating Drivers of the Patient Experience Triangle: Stress, Anxiety, and Frustration

Author

Listed:
  • Sumaya Almaazmi

    (Department of Industrial and Systems Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates)

  • Mecit Can Emre Simsekler

    (Department of Industrial and Systems Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates)

  • Andreas Henschel

    (Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates)

  • Abroon Qazi

    (School of Business Administration, American University Sharjah, Sharjah 26666, United Arab Emirates)

  • Dounia Marbouh

    (Department of Industrial and Systems Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates)

  • Rana Adel Mahmoud Ali Luqman

    (Mubadala Healthcare, IPIC Square, Abu Dhabi 45005, United Arab Emirates)

Abstract

Patient experience is a widely used indicator for assessing the quality-of-care process during a patient’s journey in hospital. However, the literature rarely discusses three components: patient stress, anxiety, and frustration. Furthermore, little is known about what drives each component during hospital visits. In order to explore this, we utilized data from a patient experience survey, including patient- and provider-related determinants, that was administered at a local hospital in Abu Dhabi, UAE. A machine-learning-based random forest (RF) algorithm, along with its embedded importance analysis function feature, was used to explore and rank the drivers of patient stress, anxiety, and frustration throughout two stages of the patient journey: registration and consultation. The attribute ‘age’ was identified as the primary patient-related determinant driving patient stress, anxiety, and frustration throughout the registration and consultation stages. In the registration stage, ‘total time taken for registration’ was the key driver of patient stress, whereas ‘courtesy demonstrated by the registration staff in meeting your needs’ was the key driver of anxiety and frustration. In the consultation step, ‘waiting time to see the doctor/physician’ was the key driver of both patient stress and frustration, whereas ‘the doctor/physician was able to explain your symptoms using language that was easy to understand’ was the main driver of anxiety. The RF algorithm provided valuable insights, showing the relative importance of factors affecting patient stress, anxiety, and frustration throughout the registration and consultation stages. Healthcare managers can utilize and allocate resources to improve the overall patient experience during hospital visits based on the importance of patient- and provider-related determinants.

Suggested Citation

  • Sumaya Almaazmi & Mecit Can Emre Simsekler & Andreas Henschel & Abroon Qazi & Dounia Marbouh & Rana Adel Mahmoud Ali Luqman, 2023. "Evaluating Drivers of the Patient Experience Triangle: Stress, Anxiety, and Frustration," IJERPH, MDPI, vol. 20(7), pages 1-13, April.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:7:p:5384-:d:1115345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/7/5384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/7/5384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    2. Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    2. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Matteo Rucco & Giovanna Viticchi & Lorenzo Falsetti, 2020. "Towards Personalized Diagnosis of Glioblastoma in Fluid-Attenuated Inversion Recovery (FLAIR) by Topological Interpretable Machine Learning," Mathematics, MDPI, vol. 8(5), pages 1-27, May.
    4. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    5. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    6. Mohamed Zine & Fouzi Harrou & Mohammed Terbeche & Mohammed Bellahcene & Abdelkader Dairi & Ying Sun, 2023. "E-Learning Readiness Assessment Using Machine Learning Methods," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    7. Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2021. "Cohort Shapley value for algorithmic fairness," Papers 2105.07168, arXiv.org.
    8. Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
    9. Wenxuan Wang & Hangshan Gao & Pengfei Wei & Changcong Zhou, 2017. "Extending first-passage method to reliability sensitivity analysis of motion mechanisms," Journal of Risk and Reliability, , vol. 231(5), pages 573-586, October.
    10. Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2022. "Variable importance without impossible data," Papers 2205.15750, arXiv.org, revised Apr 2023.
    11. Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
    12. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Yun, Wanying & Lu, Zhenzhou & Jiang, Xian, 2019. "An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 174-182.
    14. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    15. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    16. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    17. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    18. Matthias Bogaert & Michel Ballings & Martijn Hosten & Dirk Van den Poel, 2017. "Identifying Soccer Players on Facebook Through Predictive Analytics," Decision Analysis, INFORMS, vol. 14(4), pages 274-297, December.
    19. Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
    20. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:7:p:5384-:d:1115345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.