IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i5p4360-d1083862.html
   My bibliography  Save this article

Modeling the Impact of Fiscal Decentralization on Energy Poverty: Do Energy Efficiency and Technological Innovation Matter?

Author

Listed:
  • Yaru Wang

    (School of Economics and Management, Weifang University, Weifang 261061, China)

  • Guitao Qiao

    (Business School, Shandong University of Technology, Zibo 255000, China)

  • Mahmood Ahmad

    (Business School, Shandong University of Technology, Zibo 255000, China)

  • Dan Yang

    (Business School, Shandong University of Technology, Zibo 255000, China)

Abstract

As an important factor affecting economic and social development, energy poverty (EP) has received widespread concern, and many countries have actively proposed policies to eliminate energy poverty. The purpose of this paper is to clarify the current situation of energy poverty in China, explore the factors that affect energy poverty, find sustainable and effective approaches to alleviate energy poverty, and provide empirical evidence for eliminating energy poverty. This research investigates the effect of fiscal decentralization (FD), industrial structure upgrading (ISU), energy efficiency (EE), and technological innovation (TI), as well as urbanization (URB) on energy poverty using a balanced dataset of 30 provinces in China from 2004 to 2017. The empirical outcomes revealed that fiscal decentralization, industrial upgrading, energy efficiency, and technological innovation significantly reduce energy poverty. Moreover, urbanization is positively and significantly correlated with energy poverty. The outcomes further revealed that fiscal decentralization significantly increases the residents’ access to clean energy and drives energy management agencies and infrastructure. In addition, the heterogeneity analysis results indicate that the effect of fiscal decentralization in reducing energy poverty is greater in regions with high economic development. Finally, mediation analysis denotes that fiscal decentralization indirectly reduces energy poverty by promoting technological innovation and energy efficiency. Finally, based on the results, policy suggestions for eradicating energy poverty are proposed from the perspective of implementing targeted energy alleviation policies reasonably dividing the rights and responsibilities of local and central governments and encouraging scientific and technological innovation.

Suggested Citation

  • Yaru Wang & Guitao Qiao & Mahmood Ahmad & Dan Yang, 2023. "Modeling the Impact of Fiscal Decentralization on Energy Poverty: Do Energy Efficiency and Technological Innovation Matter?," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:4360-:d:1083862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/5/4360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/5/4360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jorge Martinez-Vazquez & Santiago Lago-Peñas & Agnese Sacchi, 2017. "The Impact Of Fiscal Decentralization: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 31(4), pages 1095-1129, September.
    2. Zhu, Bangzhu & Zhang, Mengfan & Zhou, Yanhua & Wang, Ping & Sheng, Jichuan & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach," Energy Policy, Elsevier, vol. 134(C).
    3. Taguchi, Hiroyuki & Murofushi, Harutaka, 2010. "Evidence on the interjurisdictional competition for polluted industries within China," Environment and Development Economics, Cambridge University Press, vol. 15(3), pages 363-378, June.
    4. Kassouri, Yacouba, 2022. "Fiscal decentralization and public budgets for energy RD&D: A race to the bottom?," Energy Policy, Elsevier, vol. 161(C).
    5. Qianqian Wu & Rong Wang, 2022. "Exploring the Role of Environmental Regulation and Fiscal Decentralization in Regional Energy Efficiency in the Context of Global Climate," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    6. Dong, Kangyin & Jiang, Qingzhe & Shahbaz, Muhammad & Zhao, Jun, 2021. "Does low-carbon energy transition mitigate energy poverty? The case of natural gas for China," Energy Economics, Elsevier, vol. 99(C).
    7. Wang, Ke & Wang, Ya-Xuan & Li, Kang & Wei, Yi-Ming, 2015. "Energy poverty in China: An index based comprehensive evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 308-323.
    8. Liangliang Liu & Donghong Ding & Jun He, 2019. "Fiscal Decentralization, Economic Growth, and Haze Pollution Decoupling Effects: A Simple Model and Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1423-1441, December.
    9. Levinson, Arik, 2003. "Environmental Regulatory Competition: A Status Report and Some New Evidence," National Tax Journal, National Tax Association;National Tax Journal, vol. 56(1), pages 91-106, March.
    10. Dong, Kangyin & Dou, Yue & Jiang, Qingzhe, 2022. "Income inequality, energy poverty, and energy efficiency: Who cause who and how?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    11. Zameer, Hashim & Shahbaz, Muhammad & Vo, Xuan Vinh, 2020. "Reinforcing poverty alleviation efficiency through technological innovation, globalization, and financial development," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    12. Zafar, Muhammad Wasif & Sinha, Avik & Ahmed, Zahoor & Qin, Quande & Zaidi, Syed Anees Haider, 2021. "Effects of biomass energy consumption on environmental quality: The role of education and technology in Asia-Pacific Economic Cooperation countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    13. Kazi Sohag & Rawshan Begum & Sharifah Abdullah, 2015. "Dynamic impact of household consumption on its CO 2 emissions in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(5), pages 1031-1043, October.
    14. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Assessing energy poverty and its effect on CO2 emissions: The case of China," Energy Economics, Elsevier, vol. 97(C).
    15. Zhao, Jun & Shahbaz, Muhammad & Dong, Kangyin, 2022. "How does energy poverty eradication promote green growth in China? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    16. Cheng, Shulei & Fan, Wei & Chen, Jiandong & Meng, Fanxin & Liu, Gengyuan & Song, Malin & Yang, Zhifeng, 2020. "The impact of fiscal decentralization on CO2 emissions in China," Energy, Elsevier, vol. 192(C).
    17. Lee, Chien-Chiang & Yuan, Zihao & Lee, Chi-Chuan & Chang, Yu-Fang, 2022. "The impact of renewable energy technology innovation on energy poverty: Does climate risk matter?," Energy Economics, Elsevier, vol. 116(C).
    18. Oum, Sothea, 2019. "Energy poverty in the Lao PDR and its impacts on education and health," Energy Policy, Elsevier, vol. 132(C), pages 247-253.
    19. Pengfei Sheng & Yaping He & Xiaohui Guo, 2017. "The impact of urbanization on energy consumption and efficiency," Energy & Environment, , vol. 28(7), pages 673-686, November.
    20. Shahbaz, Muhammad & Abbas Rizvi, Syed Kumail & Dong, Kangyin & Vo, Xuan Vinh, 2022. "Fiscal decentralization as new determinant of renewable energy demand in China: The role of income inequality and urbanization," Renewable Energy, Elsevier, vol. 187(C), pages 68-80.
    21. Pereira, Marcio Giannini & Freitas, Marcos Aurélio Vasconcelos & da Silva, Neilton Fidelis, 2010. "Rural electrification and energy poverty: Empirical evidences from Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1229-1240, May.
    22. Reyes, René & Schueftan, Alejandra & Ruiz, Cecilia & González, Alejandro D., 2019. "Controlling air pollution in a context of high energy poverty levels in southern Chile: Clean air but colder houses?," Energy Policy, Elsevier, vol. 124(C), pages 301-311.
    23. John Hills, 2011. "Fuel Poverty: The problem and its measurement. Interim Report of the Fuel Poverty Review," CASE Reports casereport69, Centre for Analysis of Social Exclusion, LSE.
    24. Apergis, Nicholas & Polemis, Michael & Soursou, Simeoni-Eleni, 2022. "Energy poverty and education: Fresh evidence from a panel of developing countries," Energy Economics, Elsevier, vol. 106(C).
    25. Banerjee, Rajabrata & Mishra, Vinod & Maruta, Admasu Asfaw, 2021. "Energy poverty, health and education outcomes: Evidence from the developing world," Energy Economics, Elsevier, vol. 101(C).
    26. Li, Weiqing & Chien, Fengsheng & Hsu, Ching-Chi & Zhang, YunQian & Nawaz, Muhammad Atif & Iqbal, Sajid & Mohsin, Muhammad, 2021. "Nexus between energy poverty and energy efficiency: Estimating the long-run dynamics," Resources Policy, Elsevier, vol. 72(C).
    27. Chakravarty, Shoibal & Tavoni, Massimo, 2013. "Energy poverty alleviation and climate change mitigation: Is there a trade off?," Energy Economics, Elsevier, vol. 40(S1), pages 67-73.
    28. Wang, Wei & Xiao, Weiwei & Bai, Caiquan, 2022. "Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level," Technology in Society, Elsevier, vol. 68(C).
    29. Ahmad, Mahmood & Jiang, Ping & Majeed, Abdul & Umar, Muhammad & Khan, Zeeshan & Muhammad, Sulaman, 2020. "The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation," Resources Policy, Elsevier, vol. 69(C).
    30. Zhang, Chenxi & Zhou, Dequn & Wang, Qunwei & Ding, Hao & Zhao, Siqi, 2022. "Will fiscal decentralization stimulate renewable energy development? Evidence from China," Energy Policy, Elsevier, vol. 164(C).
    31. Sagar, Ambuj D., 2005. "Alleviating energy poverty for the world's poor," Energy Policy, Elsevier, vol. 33(11), pages 1367-1372, July.
    32. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    33. Dong, Kangyin & Taghizadeh-Hesary, Farhad & Zhao, Jun, 2022. "How inclusive financial development eradicates energy poverty in China? The role of technological innovation," Energy Economics, Elsevier, vol. 109(C).
    34. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengxin Li & Md. Qamruzzaman, 2023. "Nexus between Environmental Degradation, Clean Energy, Financial Inclusion, and Poverty: Evidence with DSUR, CUP-FM, and CUP-BC Estimation," Sustainability, MDPI, vol. 15(19), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiong & Yang, Wanping & Ren, Xiaohang & Lu, Zudi, 2023. "Can financial inclusion affect energy poverty in China? Evidence from a spatial econometric analysis," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 255-269.
    2. Dong, Kangyin & Ren, Xiaohang & Zhao, Jun, 2021. "How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis," Energy Economics, Elsevier, vol. 103(C).
    3. Tiwari, Sunil & Si Mohammed, Kamel & Guesmi, Khaled, 2023. "A way forward to end energy poverty in China: Role of carbon-cutting targets and net-zero commitments," Energy Policy, Elsevier, vol. 180(C).
    4. Dong, Kangyin & Taghizadeh-Hesary, Farhad & Zhao, Jun, 2022. "How inclusive financial development eradicates energy poverty in China? The role of technological innovation," Energy Economics, Elsevier, vol. 109(C).
    5. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    6. Huang, Yatao & Jiao, Wenxian & Wang, Kang & Li, Erling & Yan, Yutong & Chen, Jingyang & Guo, Xuanxuan, 2022. "Examining the multidimensional energy poverty trap and its determinants: An empirical analysis at household and community levels in six provinces of China," Energy Policy, Elsevier, vol. 169(C).
    7. Lee, Chien-Chiang & Yuan, Zihao & Lee, Chi-Chuan & Chang, Yu-Fang, 2022. "The impact of renewable energy technology innovation on energy poverty: Does climate risk matter?," Energy Economics, Elsevier, vol. 116(C).
    8. Kocak, Emrah & Ulug, Eyup Emre & Oralhan, Burcu, 2023. "The impact of electricity from renewable and non-renewable sources on energy poverty and greenhouse gas emissions (GHGs): Empirical evidence and policy implications," Energy, Elsevier, vol. 272(C).
    9. Wang, Ying & Wang, Yong & Shahbaz, Muhammad, 2023. "How does digital economy affect energy poverty? Analysis from the global perspective," Energy, Elsevier, vol. 282(C).
    10. Recep Ulucak & Ramazan Sari & Seyfettin Erdogan & Rui Alexandre Castanho, 2021. "Bibliometric Literature Analysis of a Multi-Dimensional Sustainable Development Issue: Energy Poverty," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    11. Dong, Kangyin & Dou, Yue & Jiang, Qingzhe, 2022. "Income inequality, energy poverty, and energy efficiency: Who cause who and how?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    12. Jahanger, Atif & Hossain, Mohammad Razib & Awan, Ashar & Adebayo, Tomiwa Sunday, 2024. "Uplifting India from severe energy poverty accounting for strong asymmetries: Do inclusive financial development, digitization and human capital help reduce the asymmetry?," Energy Economics, Elsevier, vol. 134(C).
    13. Ding, Tao & Li, Hao & Liu, Li & Feng, Kui, 2024. "An inquiry into the nexus between artificial intelligence and energy poverty in the light of global evidence," Energy Economics, Elsevier, vol. 136(C).
    14. Li, Jinkai & Gao, Ming & Luo, Erga & Wang, Jingyi & Zhang, Xuebiao, 2023. "Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China," Energy Economics, Elsevier, vol. 119(C).
    15. Moteng, Ghislain & Raghutla, Chandrashekar & Njangang, Henri & Nembot, Luc Ndeffo, 2023. "International sanctions and energy poverty in target developing countries," Energy Policy, Elsevier, vol. 179(C).
    16. Zhang, Pengfeng & Gu, Haiying, 2023. "Potential policy coordination: Can energy intensity targets affect energy poverty?," Energy Economics, Elsevier, vol. 126(C).
    17. Ren, Yi-Shuai & Kuang, Xianhua & Klein, Tony, 2024. "Does the urban–rural income gap matter for rural energy poverty?," Energy Policy, Elsevier, vol. 186(C).
    18. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Assessing energy poverty and its effect on CO2 emissions: The case of China," Energy Economics, Elsevier, vol. 97(C).
    19. Liu, Fengqi & Kang, Yuxin & Guo, Kun, 2022. "Is electricity consumption of Chinese counties decoupled from carbon emissions? A study based on Tapio decoupling index," Energy, Elsevier, vol. 251(C).
    20. Lee, Chien-Chiang & Yuan, Zihao, 2024. "Impact of energy poverty on public health: A non-linear study from an international perspective," World Development, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:4360-:d:1083862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.