IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v124y2019icp301-311.html
   My bibliography  Save this article

Controlling air pollution in a context of high energy poverty levels in southern Chile: Clean air but colder houses?

Author

Listed:
  • Reyes, René
  • Schueftan, Alejandra
  • Ruiz, Cecilia
  • González, Alejandro D.

Abstract

Firewood is the main fuel used for heating in Chile, but its inefficient use is producing severe episodes of air pollution. To address this issue, authorities implement Air Pollution Management Plans (PDAs), which include actions such as setting moisture requirements for firewood, replacing old wood-stoves, temporarily banning the use of firewood, and improving homes´ thermal insulation. However, PDAs do not focus on nor do they prioritize measures in relation to specific social contexts. This study assessed socio-economic variables, energy consumption and indoor environments in households located in the city of Valdivia, through surveys and the monitoring of temperatures and indoor air pollution levels. We found that, during the winter months, 68% of the time living room temperatures were below 21 °C, and PM2.5 concentrations were above international standards. Furthermore, over 61% of households were to suffer a state of energy poverty. We urge decision-makers to consider social inequalities and energy consumption patterns in cities with high firewood consumption, prioritizing measures and focusing resources on reducing both air pollution and energy poverty. Thermal insulation of homes should be a priority in mid-to-low-income families, since these have the highest levels of energy demand. Other PDA´s measures could be economically regressive in these social-strata.

Suggested Citation

  • Reyes, René & Schueftan, Alejandra & Ruiz, Cecilia & González, Alejandro D., 2019. "Controlling air pollution in a context of high energy poverty levels in southern Chile: Clean air but colder houses?," Energy Policy, Elsevier, vol. 124(C), pages 301-311.
  • Handle: RePEc:eee:enepol:v:124:y:2019:i:c:p:301-311
    DOI: 10.1016/j.enpol.2018.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518306773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viggers, Helen & Keall, Michael & Wickens, Kristin & Howden-Chapman, Philippa, 2017. "Increased house size can cancel out the effect of improved insulation on overall heating energy requirements," Energy Policy, Elsevier, vol. 107(C), pages 248-257.
    2. Aristondo, Oihana & Onaindia, Eneritz, 2018. "Counting energy poverty in Spain between 2004 and 2015," Energy Policy, Elsevier, vol. 113(C), pages 420-429.
    3. Schueftan, Alejandra & González, Alejandro D., 2013. "Reduction of firewood consumption by households in south-central Chile associated with energy efficiency programs," Energy Policy, Elsevier, vol. 63(C), pages 823-832.
    4. Khandker, Shahidur R. & Barnes, Douglas F. & Samad, Hussain A., 2010. "Energy poverty in rural and urban India : are the energy poor also income poor ?," Policy Research Working Paper Series 5463, The World Bank.
    5. Liddell, Christine & Morris, Chris, 2010. "Fuel poverty and human health: A review of recent evidence," Energy Policy, Elsevier, vol. 38(6), pages 2987-2997, June.
    6. Webber, Phil & Gouldson, Andy & Kerr, Niall, 2015. "The impacts of household retrofit and domestic energy efficiency schemes: A large scale, ex post evaluation," Energy Policy, Elsevier, vol. 84(C), pages 35-43.
    7. Schueftan, Alejandra & González, Alejandro D., 2015. "Proposals to enhance thermal efficiency programs and air pollution control in south-central Chile," Energy Policy, Elsevier, vol. 79(C), pages 48-57.
    8. Howden-Chapman, Philippa & Viggers, Helen & Chapman, Ralph & O’Sullivan, Kimberley & Telfar Barnard, Lucy & Lloyd, Bob, 2012. "Tackling cold housing and fuel poverty in New Zealand: A review of policies, research, and health impacts," Energy Policy, Elsevier, vol. 49(C), pages 134-142.
    9. Moore, Richard, 2012. "Definitions of fuel poverty: Implications for policy," Energy Policy, Elsevier, vol. 49(C), pages 19-26.
    10. Bouzarovski, Stefan & Petrova, Saska & Sarlamanov, Robert, 2012. "Energy poverty policies in the EU: A critical perspective," Energy Policy, Elsevier, vol. 49(C), pages 76-82.
    11. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
    12. Bastien Girod & Peter De Haan, 2010. "More or Better? A Model for Changes in Household Greenhouse Gas Emissions due to Higher Income," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 31-49, January.
    13. Howden-Chapman, Philippa & Viggers, Helen & Chapman, Ralph & O'Dea, Des & Free, Sarah & O'Sullivan, Kimberley, 2009. "Warm homes: Drivers of the demand for heating in the residential sector in New Zealand," Energy Policy, Elsevier, vol. 37(9), pages 3387-3399, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Recep Ulucak & Ramazan Sari & Seyfettin Erdogan & Rui Alexandre Castanho, 2021. "Bibliometric Literature Analysis of a Multi-Dimensional Sustainable Development Issue: Energy Poverty," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    2. Kearns, Ade & Whitley, Elise & Curl, Angela, 2019. "Occupant behaviour as a fourth driver of fuel poverty (aka warmth & energy deprivation)," Energy Policy, Elsevier, vol. 129(C), pages 1143-1155.
    3. Fabbri, Kristian, 2015. "Building and fuel poverty, an index to measure fuel poverty: An Italian case study," Energy, Elsevier, vol. 89(C), pages 244-258.
    4. Rafal Nagaj & Jaroslaw Korpysa, 2020. "Impact of COVID-19 on the Level of Energy Poverty in Poland," Energies, MDPI, vol. 13(18), pages 1-18, September.
    5. Dalia Streimikiene & Vidas Lekavičius & Tomas Baležentis & Grigorios L. Kyriakopoulos & Josef Abrhám, 2020. "Climate Change Mitigation Policies Targeting Households and Addressing Energy Poverty in European Union," Energies, MDPI, vol. 13(13), pages 1-24, July.
    6. Belaïd, Fateh, 2018. "Exposure and risk to fuel poverty in France: Examining the extent of the fuel precariousness and its salient determinants," Energy Policy, Elsevier, vol. 114(C), pages 189-200.
    7. O'Sullivan, Kimberley C. & Stanley, James & Fougere, Geoffrey & Howden-Chapman, Philippa, 2016. "Heating practices and self-disconnection among electricity prepayment meter consumers in New Zealand: A follow-up survey," Utilities Policy, Elsevier, vol. 41(C), pages 139-147.
    8. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    9. Shahzad, Umer & Gupta, Mansi & Sharma, Gagan Deep & Rao, Amar & Chopra, Ritika, 2022. "Resolving energy poverty for social change: Research directions and agenda," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    10. Rafał Nagaj, 2022. "Macroeconomic Policy versus Fuel Poverty in Poland—Support or Barrier," Energies, MDPI, vol. 15(13), pages 1-22, June.
    11. Du, Juntao & Song, Malin & Xie, Bing, 2022. "Eliminating energy poverty in Chinese households: A cognitive capability framework," Renewable Energy, Elsevier, vol. 192(C), pages 373-384.
    12. Yiming Xiao & Han Wu & Guohua Wang & Hong Mei, 2021. "Mapping the Worldwide Trends on Energy Poverty Research: A Bibliometric Analysis (1999–2019)," IJERPH, MDPI, vol. 18(4), pages 1-22, February.
    13. Uribe, Adolfo & Chávez, Carlos & Gómez, Walter & Jaime, Marcela & Bluffstone, Randy, 2022. "Private Benefits from Ambient Air Pollution Reduction Policies: Evidence from the Household Heating Stove Replacement Program in Chile," EfD Discussion Paper 22-18, Environment for Development, University of Gothenburg.
    14. Wang, Qiang & Kwan, Mei-Po & Fan, Jie & Lin, Jian, 2021. "Racial disparities in energy poverty in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Lowans, Christopher & Furszyfer Del Rio, Dylan & Sovacool, Benjamin K. & Rooney, David & Foley, Aoife M., 2021. "What is the state of the art in energy and transport poverty metrics? A critical and comprehensive review," Energy Economics, Elsevier, vol. 101(C).
    16. Euan Phimister, Esperanza Vera-Toscano and Deborah Roberts, 2015. "The Dynamics of Energy Poverty: Evidence from Spain," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    17. Amin Nazarahari & Nader Ghotbi & Koji Tokimatsu, 2021. "Energy Poverty among College Students in Japan in a Survey of Students’ Knowledge, Attitude and Practices towards Energy Use," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    18. Camprubí, Lluís & Malmusi, Davide & Mehdipanah, Roshanak & Palència, Laia & Molnar, Agnes & Muntaner, Carles & Borrell, Carme, 2016. "Façade insulation retrofitting policy implementation process and its effects on health equity determinants: A realist review," Energy Policy, Elsevier, vol. 91(C), pages 304-314.
    19. Marlena Piekut, 2020. "Patterns of Energy Consumption in Polish One-Person Households," Energies, MDPI, vol. 13(21), pages 1-31, October.
    20. Chiara Certomà & Filippo Corsini & Marina Di Giacomo & Marco Guerrazzi, 2023. "Beyond Income and Inequality: The Role of Socio-political Factors for Alleviating Energy Poverty in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 169(1), pages 167-208, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:124:y:2019:i:c:p:301-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.